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Preface

This course ECE 487 was taught again during the Fall of 2016. Hence, the lecture notes
are slightly modified and updated. I have chosen to reduce the number of chapters taught,
so that longer time can be spent on eschewing some of the physical concepts. The chapters
skipped are marked with asterisks. They are chapters 10, 13, and 14. Hence, the reader can
skip these chapters on first reading. Also, for readers who are interested in studying quantum
electromagnetics and quantum information, they can read the first five chapters, chapters 7,
9, 11, 12, and 15.

Weng Cho CHEW
December 2016

This set of supplementary lecture notes is the outgrowth of a course I taught, ECE 487,
Quantum Electronics, at ECE Department, University of Illinois at Urbana-Champaign. It
was intended to teach quantum mechanics to undergraduate students as well as graduate
students. The primary text book for this course is Quantum Mechanics for Scientists and
Engineers by D.A.B. Miller that I have learnt a great deal from. But where I feel the book to
be incomplete, I supplement them with my lecture notes. I try to reach into first principles
as much as I could with these lecture notes. The only background needed for reading these
notes is undergraduate wave physics, and linear algebra.

I would still recommend using Miller’s book as the primary text book for such a course,
and use these notes as supplementary to teach this topic to undergraduates.

Also, I am indebted to Aiyin Liu who has helped modified part of these notes, especially
Chapter 2.

Weng Cho CHEW
June 2013
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Chapter 1

Introduction

1.1 Introduction

Quantum mechanics (or quantum physics) is an important intellectual achievement of the
20th century. It is one of the more sophisticated fields in physics that has affected our
understanding of nano-meter length scale systems important for chemistry, materials, optics,
electronics, and quantum information. The existence of orbitals and energy levels in atoms
can only be explained by quantum mechanics. Quantum mechanics can explain the behaviors
of insulators, conductors, semi-conductors, and giant magneto-resistance. It can explain the
quantization of light and its particle nature in addition to its wave nature (known as particle-
wave duality). Quantum mechanics can also explain the radiation of hot body or black body,
and its change of color with respect to temperature. It explains the presence of holes and the
transport of holes and electrons in electronic devices.

The first observation of something quantum was probably by Michael Faraday in 1838 on
cathode rays: the fact that when electrons bombard a cathode, light is given out. The next
quantum phenomenon was the black body radiation of Gustav Kirchhoff in 1859-1860. Ludwig
Boltzmann conjectured that atomic energy levels should be discrete around 1877. Heinrich
Hertz first observed the photo-electric effect in 1887 which was later explained by Einstein
in 1905 using the particle nature of light. Examples of famous physicists that contribute to
quantum mechanics were Max Planck, Albert Einstein, Niels Bohr, Louis de Broglie, Max
Born, Paul Dirac, Werner Heisenberg, Wolfgang Pauli, Erwin Schrdinger, Richard Feynman.

Marx Planck proposed the Planck radiation law in 1900 that

I(ν) =
2hν3

c2
1

ehν/kbT − 1
(1.1.1)

where h ≈ 6.626 × 10−34J · s is Planck constant, c is velocity of light, ν the frequency of
light, kb = 1.38064852(79) × 10−23J/K is Boltzmann constant, and T the temperature in
Kelvin. The above radiation law is obtained by assuming that light forms quanta of energy
each of which is given by hν when the quantum theory of light was not well understood.
When the Planck constant becomes negligibly small, implying that the quantization of light

1
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is unimportant, the above formula becomes

I(ν) ≈ 2ν2

c2
kbT (1.1.2)

which becomes Rayleigh-Jeans law of radiation. This law fails to predict radiation of a black
body correctly when the frequency is high.

Figure 1.1: Planck black body radiation law: With decreasing temperature, the peak of the
black body radiation curve shifts to longer wavelengths and also has lower intensities. The
black body radiation curves (1862) at left are also compared with the early, classical limit
model of Rayleigh and Jeans (1900) shown at right. The short wavelength side of the curves
was already approximated in 1896 by the Wien distribution law. Courtesy of Darth Kule and
Wikipedia.

Quantum mechanics has played an important role in photonics, quantum electronics, nano-
and micro-electronics, nano- and quantum optics, quantum computing, quantum communi-
cation and crytography, solar and thermo-electricity, nano-electromechanical systems, etc.
Many emerging technologies require the understanding of quantum mechanics; and hence, it
is important that scientists and engineers understand quantum mechanics better.

In nano-technologies due to the recent advent of nano-fabrication techniques, nano-meter
size systems are more common place. In electronics, as transistor devices become smaller,
how the electrons behave in the device is quite different from when the devices are bigger:
nano-electronic transport is quite different from micro-electronic transport. For small devices,
the electron can travel for a distance without colliding with a lattice, when the electron travels
through it, hence, giving rise to ballistic transport. For large devices, the electron collides
many times with the lattice when traversing it, giving rise to collision dominated transport.

The quantization of electromagnetic field is important in the area of nano-optics and
quantum optics. It explains how photons interact with atomic systems or materials. It also
allows the use of electromagnetic or optical field to carry quantum information. Quantum
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mechanics is certainly giving rise to interest in quantum information, quantum communica-
tion, quantum cryptography, and quantum computing. Moreover, quantum mechanics is also
needed to understand the interaction of photons with materials in solar cells, as well as many
topics in material science.

When two objects are placed close together, they experience a force called the Casimir
force that can only be explained by quantum mechanics. (This force is there even when no
electromagnetic field is present in the classical sense. Even at zero temperature, and “zero”
field, a vacuum electromagnetic fluctuation exists, giving rise to attractive force between two
neutral objects.) This is important for the understanding of micro/nano-electromechanical
systems (M/NEMS). Moreover, the understanding of spins is important in spintronics, another
emerging technology where giant magneto-resistance, tunneling magneto-resistance, and spin
transfer torque are being used. It is obvious that the richness of quantum physics will greatly
affect the future generation technologies in many aspects.

1.2 Quantum Mechanics is Bizarre

The development of quantum mechanics is a great intellectual achievement, but at the same
time, it is bizarre. The reason is that quantum mechanics is quite different from classical
physics. The development of quantum mechanics is likened to watching two players having
a game of chess, but the observers have not a clue as to what the rules of the game are. By
observations, and conjectures, finally the rules of the game are outlined. Often, equations are
conjectured like conjurors pulling tricks out of a hat to match experimental observations. It
is the interpretations of these equations that can be quite bizarre.

Quantum mechanics equations were postulated to explain experimental observations, but
the deeper meanings of the equations often confused even the most gifted. Even though
Einstein received the Nobel prize for his work on the photo-electric effect that confirmed
that light energy is quantized, he himself was not totally at ease with the development of
quantum mechanics as charted by the younger physicists. He was never comfortable with the
probabilistic interpretation of quantum mechanics by Born and the Heisenberg uncertainty
principle: “God doesn’t play dice,” was his statement assailing the probabilistic interpreta-
tion. He proposed “hidden variables” to explain the random nature of many experimental
observations. He was thought of as the “old fool” by the younger physicists during his time.

Schrödinger came up with the bizarre “Schrödinger cat paradox” that showed the struggle
that physicists had with quantum mechanics’ interpretation. But with today’s understanding
of quantum mechanics, the paradox is a thing of yesteryear.

The latest twist to the interpretation in quantum mechanics is the parallel universe view
that explains the multitude of outcomes of the prediction of quantum mechanics. All outcomes
are possible, but with each outcome occurring in different universes that exist in parallel with
respect to each other ...
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1.3 The Wave Nature of a Particle—Wave-Particle Du-
ality

The quantized nature of the energy of light was first proposed by Planck in 1900 to successfully
explain the black body radiation. Einstein’s explanation of the photoelectric effect (1905)
further asserts the quantized nature of light, or light as a photon with a packet of energy
given by1

E = ~ω (1.3.1)

where ~ = h/(2π) is the reduced Planck constant or Dirac constant, and h is the Planck’s
constant, given by

h ≈ 6.626× 10−34Joule · second (1.3.2)

However, it is well known that light is a wave since it can be shown to interfere as waves in
the Newton ring experiment as far back as 1717. Hence, light exhibits wave-particle duality.

Electron was first identified as a particle by Thomson (1897). From the fact that a photon
has energy E = ~ω and that it also has an energy related to its momentum p by E = pc
where c is the velocity of light,2 De Broglie (1924) hypothesized that the wavelength of an
electron, when it behaves like a wave, is

λ =
h

p
(1.3.3)

where p is the electron momentum.3 The wave nature of an electron is revealed by the fact
that when electrons pass through a crystal, they produce a diffraction pattern. That can only
be explained by the wave nature of an electron. This experiment was done by Davisson and
Germer in 1927.4 When an electron manifests as a wave, it is described by

ψ(z) ∝ exp(ikz) (1.3.4)

where k = 2π/λ. Such a wave is a solution to5

∂2

∂z2
ψ = −k2ψ (1.3.5)

1In the photoelectric effect, it was observed that electrons can be knocked off a piece of metal only if the
light exceeded a certain frequency. Above that frequency, the electron gained some kinetic energy proportional
to the excess frequency. Einstein then concluded that a packet of energy was associated with a photon that
is proportional to its frequency.

2This follows from Einstein theory of relativity that says the E2 − (pc)2 = (mc2)2 where m is the rest
mass of the particle. Photon has zero rest mass. When p = 0, this is the famous E = mc2 formula.

3Typical electron wavelengths are of the order of nanometers. Compared to 400 nm of wavelength of blue
light, they are much smaller. Energetic electrons can have even smaller wavelengths. Hence, electron waves
can be used to make electron microscope whose resolution is much higher than optical microscope.

4Young’s double slit experiment was conducted in early 1800s to demonstrate the wave nature of photons.
Due to the short wavelengths of electrons, it was not demonstrated it until 2002 by Jonsson. But it has been
used as a thought experiment by Feynman in his lectures.

5The wavefunction can be thought of as a “halo” that an electron carries that determine its underlying
physical properties and how it interact with other systems.
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A generalization of this to three dimensions yields

∇2ψ(r) = −k2ψ(r) (1.3.6)

We can define, from de Broglie’s formula that

p = ~k (1.3.7)

where ~ = h/(2π).6 Consequently, we arrive at an equation

− ~2

2m0
∇2ψ(r) =

p2

2m0
ψ(r) (1.3.8)

where

m0 ≈ 9.11× 10−31kg (1.3.9)

The expression p2/(2m0) is the kinetic energy of an electron. Hence, the above can be
considered an energy conservation equation.

The Schrödinger equation (1925) is motivated by further energy balance that total energy
is equal to the sum of potential energy and kinetic energy. Defining the potential energy to
be V (r), the energy balance equation becomes[

− ~2

2m0
∇2 + V (r)

]
ψ(r) = Eψ(r) (1.3.10)

where E is the total energy of the system. The above is the time-independent Schrödinger
equation. The ad hoc manner at which the above equation is arrived at usually bothers
a beginner in the field. However, it predicts many experimental outcomes. It particular,
it predicts the energy levels and orbitals of a trapped electron in a hydrogen atom with
resounding success.

One can further modify the above equation in an ad hoc manner by noticing that other
experimental finding shows that the energy of a photon is E = ~ω. Hence, if we let

i~
∂

∂t
Ψ(r, t) = EΨ(r, t) (1.3.11)

then

Ψ(r, t) = e−iωtψ(r) (1.3.12)

Then we arrive at the time-dependent Schrödinger equation:[
− ~2

2m0
∇2 + V (r)

]
Ψ(r, t) = i~

∂

∂t
Ψ(r, t) (1.3.13)

Another disquieting fact about the above equation is that it is written in terms of complex
functions and numbers. In our prior experience with classical laws, they can all be written in
real functions and numbers. We will later learn the reason for this.

6This is also called Dirac constant sometimes.
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Mind you, in the above, the frequency is not unique. We know that in classical physics,
the potential V is not unique, and we can add a constant to it, and yet, the physics of the
problem does not change. So, we can add a constant to both sides of the time-independent
Schrödinger equation (1.3.11), and yet, the physics should not change. Then the total E on
the right-hand side would change, and that would change the frequency we have arrived at
in the time-dependent Schrödinger equation. We will explain how to resolve this dilemma
later on. Just like potentials, in quantum mechanics, it is the difference of frequencies that
matters in the final comparison with experiments, not the absolute frequencies.

The setting during which Schrödinger equation was postulated was replete with knowledge
of classical mechanics. It will be prudent to review some classical mechanics knowledge next.



Chapter 2

Classical Mechanics and Some
Mathematical Preliminaries

2.1 Introduction

Quantum mechanics cannot be derived from classical mechanics, but classical mechanics
can inspire quantum mechanics. Quantum mechanics is richer and more sophisticated than
classical mechanics. Quantum mechanics was developed during the period when physicists
had rich knowledge of classical mechanics. In order to better understand how quantum
mechanics was developed in this environment, it is better to understand some fundamental
concepts in classical mechanics. Classical mechanics can be considered as a special case of
quantum mechanics. We will review some classical mechanics concepts here.

In classical mechanics, a particle moving in the presence of potential1 V (q) will experience
a force given by

F (q) = −dV (q)

dq
(2.1.1)

where q represents the coordinate or the position of the particle. Hence, the particle can be
described by the equations of motion

dp

dt
= F (q) = −dV (q)

dq
,

dq

dt
= p/m (2.1.2)

For example, when a particle is attached to a spring and moves along a frictionless surface,
the force the particle experiences is F (q) = −kq where k is the spring constant. Then the
equations of motion of this particle are

dp

dt
= ṗ = −kq, dq

dt
= q̇ = p/m (2.1.3)

1The potential here refers to potential energy.

7
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q

V(q)

q

Figure 2.1: The left side shows a potential well in which a particle can be trapped. The right
side shows a particle attached to a spring. The particle is subject to the force due to the
spring, but it can also be described by the force due to a potential well.

Given p and q at some initial time t0, one can integrate (2.1.2) or (2.1.3) to obtain p and q for
all later time. A numerical analyst can think of that (2.1.2) or (2.1.3) can be solved by the
finite difference method, where time-stepping can be used to find p and q for all later times.
For instance, we can write the equations of motion more compactly as

du

dt
= f(u) (2.1.4)

where u = [p, q]t, and f is a general vector function of u. It can be nonlinear or linear; in the
event if it is linear, then f(u) = A · u.

Using finite difference approximation, we can rewrite the above as

u(t+ ∆t)− u(t)
.
= ∆tf(u(t)),

u(t+ ∆t)
.
= ∆tf(u(t)) + u(t) (2.1.5)

The above can be used for time marching to derive the future values of u from past values.
The above equations of motion are essentially derived using Newton’s law. However, there

exist other methods of deriving these equations of motion. Notice that only two variables p
and q are sufficient to describe the state of a particle.

2.2 Lagrangian Formulation

Another way to derive the equations of motion for classical mechanics is via the use of the
Lagrangian and the principle of least action. A Lagrangian is usually defined as the difference
between the kinetic energy and the potential energy, i.e.,

L(q̇, q) = T − V (2.2.1)

where q̇ is the velocity. For a fixed t, q and q̇ are independent variables, since q̇ cannot be
derived from q if it is only known at one given t. The equations of motion are derived from the
principle of least action which says that q(t) that satisfies the equations of motion between
two times t1 and t2 should minimize the action integral

S =

∫ t2

t1

L(q̇(t), q(t))dt (2.2.2)
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Assuming that q(t1) and q(t2) are fixed, then the function q(t) and q̇(t) that varies between
t1 and t2 should minimize S, the action. In other words, a first order perturbation in q from
the optimal answer that minimizes S should give rise to second order error in S. Hence,
taking the first variation of (2.2.2), we have

δS = δ

∫ t2

t1

L(q̇, q)dt =

∫ t2

t1

L(q̇ + δq̇, q + δq)dt−
∫ t2

t1

L(q̇, q)dt

=

∫ t2

t1

δL(q̇, q)dt =

∫ t2

t1

(
δq̇
∂L

∂q̇
+ δq

∂L

∂q

)
dt = 0 (2.2.3)

In order to take the variation into the integrand, we have to assume that δL(q̇, q) is taken
with constant time. At constant time, q̇ and q are independent variables; hence, the partial
derivatives in the next equality above follow. Using integration by parts on the first term, we
have

δS = δq
∂L

∂q̇

∣∣∣∣t2
t1

−
∫ t2

t1

δq
d

dt

(
∂L

∂q̇

)
dt+

∫ t2

t1

δq
∂L

∂q
dt

=

∫ t2

t1

δq

[
− d

dt

(
∂L

∂q̇

)
+
∂L

∂q

]
dt = 0 (2.2.4)

The first term vanishes because δq(t1) = δq(t2) = 0 because q(t1) and q(t2) are fixed. Since
δq(t) is arbitrary between t1 and t2, we must have

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0 (2.2.5)

The above is called the Lagrange equation, from which the equation of motion of a particle can
be derived. The derivative of the Lagrangian with respect to the velocity q̇ is the momentum

p =
∂L

∂q̇
(2.2.6)

The derivative of the Lagrangian with respect to the coordinate q is the force. Hence

F =
∂L

∂q
(2.2.7)

The above equation of motion is then

ṗ = F (2.2.8)

Equation (2.2.6) can be inverted to express q̇ as a function of p and q, namely

q̇ = f(p, q) (2.2.9)

The above two equations can be solved in tandem to find the time evolution of p and q.
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For example, the kinetic energy T of a particle is given by

T =
1

2
mq̇2 (2.2.10)

Then from (2.2.1), and the fact that V is independent of q̇,

p =
∂L

∂q̇
=
∂T

∂q̇
= mq̇ (2.2.11)

or

q̇ =
p

m
(2.2.12)

Also, from (2.2.1), (2.2.7), and (2.2.8), we have

ṗ = −∂V
∂q

(2.2.13)

The above pair, (2.2.12) and (2.2.13), form the equations of motion for this problem.
The above can be generalized to multidimensional problems. For example, for a one

particle system in three dimensions, qi has three degrees of freedom, and i = 1, 2, 3. (The qi
can represent x, y, z in Cartesian coordinates, but r, θ, φ in spherical coordinates.) But for
N particles in three dimensions, there are 3N degrees of freedom, and i = 1, . . . , 3N . The
formulation can also be applied to particles constraint in motion. For instance, for N particles
in three dimensions, qi may run from i = 1, . . . , 3N − k, representing k constraints on the
motion of the particles. This can happen, for example, if the particles are constraint to move
in a manifold (surface), or a line (ring) embedded in a three dimensional space.

Going through similar derivation, we arrive at the equation of motion

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 (2.2.14)

In general, qi may not have a dimension of length, and it is called the generalized coordinate
(also called conjugate coordinate). Also, q̇i may not have a dimension of velocity, and it is
called the generalized velocity.

The derivative of the Lagrangian with respect to the generalized velocity is the generalized
momentum (also called conjugate momentum), namely,

pi =
∂L

∂q̇i
(2.2.15)

The generalized momentum may not have a dimension of momentum. Hence, the equation
of motion (2.2.14) can be written as

ṗi =
∂L

∂qi
(2.2.16)

Equation (2.2.15) can be inverted to yield an equation for q̇i as a function of the other
variables. This equation can be used in tandem (2.2.16) as time-marching equations of motion.
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2.2.1 The Classical Harmonic Oscillator

As a simple example for the use of the Lagrangian formulation we investigate the harmonic
oscillator. We take our model to be that sketched in Figure 2.1 in which a particle of mass
m is attached to a spring of spring constant k and is constrained to move in the horizontal
direction.

The very first step in composing the equations of motion consist of identifying the suitable
coordinates for the system. In this case the horizontal distance is best referenced to the rest
position of the spring. We shall measure the length that the spring is compressed or stretched
by q. With this coordinate set up, we proceed to write down the Lagrangian.

L(q, q̇) = T − V =
1

2
mq̇2 − 1

2
kq2 (2.2.17)

From the Lagrangian we write down the equation of motion for the particle using the Euler-
Lagrange equation (2.2.5).

∂L

∂q
= −kq

d

dt

∂L

∂q̇
= mq̈

Equating the above we get the familiar equation describing a mass attached to a spring.

mq̈ = −kq (2.2.18)

In spite of its simplicity, the harmonic oscillator model has many applications in physics.
Most smooth potentials will look almost quadratic in the neighborhood of a minimum. The
inter-atomic potential has this character. For this reason, a chain of atoms may be modeled
using a chain of identical particles connected by identical springs. For small longitudinal
motion, the Lagrangian for such a system can be written as a sum of harmonic oscillators.

L =
∑
n

1

2
m ẏ2

n −
∑
n

1

2
k [yn+1 − yn]2 (2.2.19)

Here we denote the longitudinal displacement from equilibrium position of the n-th atom by
yn. The variable along the chain direction can be denoted by x and the inter-atomic distance
at equilibrium by ∆x. In other words, the displacement of the n-th atom, yn is a function of
x. Though they do not show up in the above Lagrangian, we shall use for them in the next
example.

2.2.2 Continuum Mechanics of a Cylinder

We next turn to the slightly more complicated problem of the longitudinal motion of an elastic
cylinder. The continuous cylinder can be seen as a limit of the atomic chain. To take the
continuum limit of equation (2.2.19) we make the inter-atomic distance ∆x explicit.

L =
∑
n

1

2

m

∆x
ẏ2
n∆x−

∑
n

1

2
k∆x

[
yn+1 − yn

∆x

]2

∆x (2.2.20)
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Δx Δx Δx

yn-1 yn yn+1

(n-1)Δx nΔx (n+1)Δx (n+2)Δx

Figure 2.2: A chain of linear atoms can be used to approximate a longitudinal mode on a solid
cylinder. The mass density per unit length ρ = m/∆x, and the spring constant k becomes
large when ∆x becomes small such that k∆x = T , the tension.

Nothing is changed by the insertion of the ∆x factors. However, we can associated the discrete
quantities m/∆x and k∆x with their continuum counterparts ρ and T , which are the linear
mass density and string tension, respectively, because m becomes smaller, and k becomes
larger when ∆x → 0. These parameters characterize the continuous string. Dimensional
analysis justifies these associations.

Taking the continuum limit ∆x → dx in equation (2.2.20), the discrete index n can be
replaced by the continuous x since n∆x→ x; and the difference term in the second summation
turns into a derivative. Inserting the continuum parameters we have

L =
∑
n

1

2
ρ ẏ2(x, t)∆x−

∑
n

1

2
T

[
∂y(x, t)

∂x

]2

∆x

L(ẏ, y′) =

∫ `

0

[
1

2
ρ ẏ2(x, t)− 1

2
T y′2(x, t)

]
dx (2.2.21)

where y′(x, t) = ∂y(x, t)/∂x, and ` is the total length of the cylinder. In equation (2.2.21), dot
denotes time derivative and prime denotes spatial derivative. The limits of integration sets
the horizontal length of the string. It is important to note that x has entered the Lagrangian
simply as a replacement for the discrete index n and holds little physical significance. Despite
seemingly having two spatial coordinates y and x, the mechanics of the string remains a one
dimensional problem. The dynamical variable is y while x is only a parameter. The functional
form of y(x, t) describes the shape of the string at a certain time.

The quantity inside the integral over x is called the Lagrangian density L.

L(ẏ, y′) =
1

2
ρ ẏ2 − 1

2
T y′2 (2.2.22)

Continuum mechanics are characterized by Lagrangian densities. The action is still given by
the time integral of the Lagrangian.

S =

∫ t2

t1

dt

∫ `

0

dx L(ẏ, y′) (2.2.23)
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To write the equation of motion, we use the principle of least action. Make a variation to the
shape of the string y(x, t)→ y(x, t) + δy(x, t), the corresponding variations to the spatial and
temporal derivatives of y are

ẏ → ẏ + δẏ

y′ → y′ + δy′

To compute the change in the action we identify the explicit dependence of the Lagrangian
density on ẏ and y′ and do a Taylor expansion. Keeping only first order terms we have:

δS =

∫ t2

t1

dt

∫ `

0

dx

[
∂L
∂ẏ

δẏ +
∂L
∂y′

δy′
]

δS =

∫ t2

t1

dt

∫ `

0

dx [ρẏ δẏ − Ty′ δy′] (2.2.24)

The strategy then is to factor out the variation δy via integration by parts. The order of
integration can be interchanged freely. We proceed as

δS =

∫ `

0

dx

∫ t2

t1

dt ρẏ δẏ −
∫ t2

t1

dt

∫ `

0

dx Ty′δy′

=

∫ `

0

dx

[
ρẏ δy

∣∣∣∣t2
t1

−
∫ t2

t1

dt ρÿ δy

]
−
∫ t2

t1

dt

[
Ty′δy

∣∣∣∣`
0

−
∫ `

0

dx Ty′′δy

]

δS =

∫ t2

t1

dt

∫ `

0

dx [−ρÿ + Ty′′] δy (2.2.25)

Using the arbitrariness of δy we conclude that the stationarity of the action amounts to
setting −ρÿ + Ty′′ = 0. We define a velocity v =

√
T/ρ and recognize this as the familiar

wave equation.
∂2y

∂x2
=

1

v2

∂2y

∂t2
(2.2.26)

We must elaborate on a point about fixing boundary conditions here. In the line leading to
equation (2.2.25), we have explicitly written the integrated out pieces. They are then both
set to zero but for quite different reasons.

We set the boundary pieces in the dx integral (first integral) to zero because as is always
done in deriving the equations of motion in Lagrangian mechanics, we require that the shape
of the displacement, y(x, t1) and y(x, t2) to be fixed at these two times.

The boundary pieces in the dt integral are set to zero because of boundary conditions. If
y(x, t) is fixed at x = 0 and x = ` (Dirichlet boundary condition), or if y′(x, t) = 0 at x = 0
and x = ` (Neumann boundary condition), then these pieces are zero. Also, if one is solving a
periodic problem, then y′δy are equal to each other at these two end points x = 0 and x = `,
and these two pieces cancel each other due to the periodic boundary condition.

With the example of the string we conclude our introduction of the Lagrangian formulation
of classical mechanics.
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2.3 Hamiltonian Formulation

For a multi-dimensional system, or a many particle system in multi-dimensions, the total
time derivative of L is

dL

dt
=
∑
i

(
∂L

∂qi
q̇i +

∂L

∂q̇i
q̈i

)
(2.3.1)

Since ∂L/∂qi = d
dt (∂L/∂q̇i) from the Lagrange equation, we have

dL

dt
=
∑
i

[
d

dt

(
∂L

∂q̇i

)
q̇i +

∂L

∂q̇i
q̈i

]
=

d

dt

∑
i

(
∂L

∂q̇i
q̇i

)
(2.3.2)

or

d

dt

(∑
i

∂L

∂q̇i
q̇i − L

)
= 0 (2.3.3)

The quantity

H =
∑
i

∂L

∂q̇i
q̇i − L (2.3.4)

is known as the Hamiltonian of the system, and is a constant of motion, namely, dH/dt = 0.
As shall be shown, the Hamiltonian represents the total energy of a system. It is a constant
of motion because of the conservation of energy.

The Hamiltonian of the system, (2.3.4), can also be written, after using (2.2.15), as

H =
∑
i

q̇ipi − L (2.3.5)

where pi = ∂L/∂q̇i is the generalized momentum. The first term has a dimension of energy,
and in Cartesian coordinates, for a simple particle motion, it is easily seen that it is twice the
kinetic energy. Hence, the above indicates that the Hamiltonian

H = T + V (2.3.6)

The total variation of the Hamiltonian is

δH = δ

(∑
i

piq̇i

)
− δL

=
∑
i

(q̇iδpi + piδq̇i)−
∑
i

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i

)
(2.3.7)

Using (2.2.15) and (2.2.16), we have

δH =
∑
i

(q̇iδpi + piδq̇i)−
∑
i

(ṗiδqi + piδq̇i)

=
∑
i

(q̇iδpi − ṗiδqi) (2.3.8)
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From the above, since the first variation of the Hamiltonian depends only on δpi and δqi,
we gather that the Hamiltonian is a function of pi and qi. Taking the first variation of
the Hamiltonian with respect to these variables, we arrive at another expression for its first
variation, namely,

δH =
∑
i

(
∂H

∂pi
δpi +

∂H

∂qi
δqi

)
(2.3.9)

Comparing the above with (2.3.8), we gather that

q̇i =
∂H

∂pi
(2.3.10)

ṗi = −∂H
∂qi

(2.3.11)

These are the equations of motion known as the Hamilton’s equations.
The (2.3.4) is also known as the Legendre transformation. The original function L is a

function of q̇i, qi. Hence, δL depends on both δq̇i and δqi. After the Legendre transformation,
δH depends on the differential δpi and δqi as indicated by (2.3.8). This implies that H is a
function of pi and qi. The equations of motion then can be written as in (2.3.10) and (2.3.11).

Alternatively, one can argue that since the Hamiltonian represents the total energy of
the system, it must be a constant of motion, or constant with respect to time due to energy
conservation. Therefore, taking the time derivative of the Hamiltonian, one ends up with

∂H

∂t
=
∑
i

(
∂H

∂pi

∂pi
∂t

+
∂H

∂qi

∂qi
∂t

)
= 0 (2.3.12)

One can see that when the Hamilton’s equations are satisfied, it implies that energy is con-
served.

2.4 More on Hamiltonian

The Hamiltonian of a particle in classical mechanics is given by (2.3.6), and it is a function
of pi and qi. For a non-relativistic particle in three dimensions, the kinetic energy

T =
p · p
2m

(2.4.1)

and the potential energy V is a function of q. Hence, the Hamiltonian can be expressed as

H =
p · p
2m

+ V (q) (2.4.2)

in three dimensions. When an electromagnetic field is present, the Hamiltonian for an electron
can be derived by letting the generalized momentum

pi = mq̇i + eAi (2.4.3)
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where e = −|e| is the electron charge and Ai is component of the vector potential A. Conse-
quently, the Hamiltonian of an electron in the presence of an electromagnetic field is

H =
(p− eA) · (p− eA)

2m
+ eφ(q) (2.4.4)

The equation of motion of an electron in an electromagnetic field is governed by the Lorentz
force law, which can be derived from the above Hamiltonian using the equations of motion
provided by (2.3.10) and (2.3.11).

2.5 Poisson Bracket

Yet another way of expressing equations of motion in classical mechanics is via the use of
Poisson bracket. This is interesting because Poisson bracket has a close quantum mechanics
analogue. A Poisson bracket of two scalar variables u(q, p) and v(q, p) that are functions of q
and p is defined as

{u, v} =
∂u

∂q

∂v

∂p
− ∂v

∂q

∂u

∂p
(2.5.1)

In this notation, using (2.3.10) and (2.3.11),

du

dt
=
∂u

∂q

dq

dt
+
∂u

∂p

dp

dt
=
∂u

∂q

∂H

∂p
− ∂u

∂p

∂H

∂q

= {u,H} (2.5.2)

which is valid for any variable u that is a function of p and q. Hence, from the Hamilton’s
equations of motion,

∂q

∂t
=
∂H

∂p
,

∂p

∂t
= −∂H

∂q
(2.5.3)

we have the equations of motion as

q̇ = {q,H}, ṗ = {p,H} (2.5.4)

in the Poisson bracket notation. As we shall see later, similar equations will appear in quantum
mechanics.

The algebraic properties of Poisson bracket are

{u, v} = −{v, u} (2.5.5)

{u+ v, w} = {u,w}+ {v, w} (2.5.6)

{uv,w} = {u,w}v + u{v, w} (2.5.7)

{u, vw} = {u, v}w + v{u,w} (2.5.8)

{{u, v}, w}+ {{v, w}, u}+ {{w, u}, v} = 0 (2.5.9)

These properties are antisymmetry, distributivity, associativity and Jacobi’s identity.
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If we define a commutator operation between two noncommuting operator û and v̂ as

[û, v̂] = ûv̂ − v̂û, (2.5.10)

where û and v̂ are analogous to matrix operators, it can be shown that the above commutator
have the same algebraic properties as the Poisson bracket. An operator in quantum mechanics
can be a matrix operator or a differential operator. In general, operators do not commute
unless under very special circumstances.

2.6 Some Useful Knowledge of Matrix Algebra

Matrix algebra (or linear algebra) forms the backbone of many quantum mechanical concepts.
Hence, it is prudent to review some useful knowledge of matrix algebra. Many of the math-
ematical manipulations in quantum mechanics can be better understood if we understand
matrix algebra.

A matrix is a mathematical linear operator that when operate (also called “act”) on a
vector produces another vector, or

b = A · a (2.6.1)

where a and b are distinct vectors, and A is a matrix operator other than the identity
operator. The inner product between two vectors can be of the form of reaction inner product

vt ·w (2.6.2)

or energy inner product

v† ·w (2.6.3)

where the † implies conjugation transpose or that v† = (v∗)t. For a finite dimensional matrix
and vectors, the above can be written as

bj =

N∑
i=1

Ajiai (2.6.4)

vt ·w =
N∑
i=1

viwi (2.6.5)

v† ·w =

N∑
i=1

v∗iwi (2.6.6)

The above are sometimes written with the summation sign removed, namely, as

bj = Ajiai (2.6.7)

vt ·w = viwi (2.6.8)

v† ·w = v∗iwi (2.6.9)
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The summation is implied whenever repeated indices occur. This is known varyingly as the
index notation, indicial notation, or Einstein notation.

The above concepts can be extended to infinite dimensional system by letting N → ∞,
but the convergence of the summations must be established in order for the inner product to
be meaningful. It is quite clear that

v† · v =

N∑
i=1

v∗i vi =

N∑
i=1

|vi|2 > 0 (2.6.10)

or v† · v is positive definite.
Furthermore, matrix operators satisfies associativity but not commutativity, namely,(

A ·B
)
·C = A ·

(
B ·C

)
(2.6.11)

A ·B 6= B ·A (2.6.12)

2.6.1 Identity, Hermitian, Symmetric, Inverse and Unitary Matrices

For discrete, countable systems, the definition of the above is quite straightforward. The
identity operator I is defined such that

I · a = a (2.6.13)

or the ij element of the matrix is [
I
]
ij

= δij (2.6.14)

or it is diagonal matrix with one on the diagonal. A Hermitian matrix Aij has the property
that

Aij = A∗ji (2.6.15)

or

A
†

= A (2.6.16)

A symmetric matrix Aij is such that

Aij = Aji (2.6.17)

or

A
t

= A (2.6.18)

The inverse of the matrix A, denoted as A
−1

, has the property that

A
−1 ·A = I (2.6.19)
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So given the equation

A · x = b (2.6.20)

x can be found once A
−1

is known. Multiplying the above by A
−1

, we have

x = A
−1 · b (2.6.21)

A unitary matrix U has the property that

U
† ·U = I (2.6.22)

In other words

U
†

= U
−1

(2.6.23)

2.6.2 Determinant

An N ×N matrix A can be written as a collection of column vectors

A = [a1,a2,a3, . . . ,aN ] (2.6.24)

where the column vectors are of length N . Determinant of A, the det(A), or |A| can be
thought of as the “volume” subtended by the vectors an . . .aN . Also, det(A) changes sign
when any two column vectors are swapped. It can be thought of as a generalized “cross-
product”. Some useful properties of determinants are

1. det
(
I
)

= 1

2. det
(
A
t
)

= det
(
A
)

3. det
(
A ·B

)
= det

(
A) · det(B

)
4. det

(
A
−1
)

= 1/det
(
A
)

5. If Λ is diagonal, then det
(
Λ
)

=
∏N
i=1 λii

6. det
(
A
)

=
∏N
i=1 λi where λi are the eigenvalues of A.

7. det
(
A
)

= 0 implies that A is singular, or there exists a vector u such that A · u =0

8. det
(
cA
)

= cNdet
(
A
)
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2.6.3 Eigenvectors and Eigenvalues

An eigenvector v of a matrix A satisfies the property that

A · v = λv (2.6.25)

where λ is the eigenvalue. The above can be rewritten as(
A− λI

)
· v = 0 (2.6.26)

The above implies that

det
(
A− λI

)
= 0 (2.6.27)

In general, an N×N matrix has N eigenvalues with corresponding N eigenvectors. When
two or more eigenvalues are the same, they are known as degenerate. Some useful properties
are:

1. If A is Hermitian, then λ is real.

2. If λi 6= λj , then v†i · vj = 0. In general, v†i · vj = Cnδij where Cn is real.

3. If A is positive definite, then λi > 0 for all i and vice versa for negative definiteness.

4. P ·A ·P−1
has the same eigenvalues as A.

2.6.4 Trace of a Matrix

The trace of a matrix A is the sum of its diagonal elements, or

tr
(
A
)

=

N∑
i=1

Aii (2.6.28)

Some properties are:

1. tr
(
A + B

)
=tr
(
A
)
+tr
(
B
)

2. tr
(
cA
)
=c tr

(
A
)

3. tr
(
A
)
=tr
(
A
t
)

4. tr
(
A ·B

)
=tr
(
B ·A

)
5. tr

(
P
−1 ·A ·P

)
=tr
((

A ·P
)
·P−1

)
=tr
(
A
)

6. tr
(
A
)

=
∑N
i=1 λi where λi’s are the eigenvalues of A.
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2.6.5 Function of a Matrix

An example of a function of a matrix is

eA (2.6.29)

The above has no meaning unless it operates on a vector; namely

eA · x = b (2.6.30)

We can Taylor series expand to get

eA = I + A +
A

2

2!
+

A
3

3!
+ · · ·+ A

n

n!
+ · · · (2.6.31)

Then if v is an eigenvector of A such that A · v = λv, then

eA · v =

(
I + A +

A
2

2!
+ · · ·+ A

n

n!
+ · · ·

)
· v (2.6.32)

=

(
1 + λ+

λ2

2!
+ · · ·+ λn

n!
+ · · ·

)
· v (2.6.33)

= eλv (2.6.34)

In general, we can expand

x =

N∑
i=1

aivi (2.6.35)

where vi, i = 1, · · · , N are the N eigenvectors of A with the property that A · vi = λivi.
Then

eA · x =

N∑
i=1

aie
Avi =

N∑
i=1

aie
λivi (2.6.36)

We can use the above to easily prove that the solution to

dv(t)

dt
= A · v(t) (2.6.37)

is
v(t) = eAt · v(0) (2.6.38)

Exercise 1

For a particle with charge q in the presence of an electric field, the classical Hamiltonian
is given by

H =
1

2m
(p− qA)2 + qφ (2.6.39)
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The equation of motion from the Hamiltonian equations are

ẋj = ∂H/∂pj , ṗj = −∂H/∂xj (2.6.40)

Show that

ẋj =
1

m
(pj − qAj) (2.6.41)

ṗj =
q

m
(p− qA) · ∂A

∂xj
− q ∂φ

∂xj
(2.6.42)

We can express

r = xx1 + yx2 + zx3 = xx+ yy + zz, p = xp1 + yp2 + zp3 = xpx + ypy + zpz (2.6.43)

where the hat quantities are unit vectors. With the help of indicial notation, show that the
above can be written as

ṙ =
1

m
(p− qA) (2.6.44)

ṗ =
q

m
∇A · (p− qA)− q∇φ = q∇A · ṙ− q∇φ (2.6.45)

Since the vector potential is associate with the electron charge location, show that

Ȧj =
∑
i

∂Aj
∂xi

ẋi +
∂Aj
∂t

(2.6.46)

or that

Ȧ = ṙ · ∇A +
∂A

∂t
(2.6.47)

Derive that

mr̈ = q∇A · ṙ− qṙ · ∇A− q∇φ− q ∂A

∂t
(2.6.48)

Show that the above is the same as the Lorentz force law that

F = ma = qv×B + qE (2.6.49)

where F is the force on the electron, a is the acceleration, and v is the velocity, B is the
magnetic field, and E is the electric field.



Chapter 3

Quantum Mechanics—Some
Preliminaries

3.1 Introduction

With some background in classical mechanics, we may motivate the Schrödinger equation
in a more sanguine fashion. Experimental evidence indicated that small particles such as
electrons behave quite strangely and cannot be described by classical mechanics alone. In
classical mechanics, once we know p and q and their time derivatives (or ṗ, q̇) of a particle at
time t0, one can integrate the equations of motion

ṗ = F, q̇ = p/m (3.1.1)

or use the finite difference method to find p and q at t0 + ∆t, and at all subsequent times.

In quantum mechanics, the use of two variables p and q and their derivatives is insufficient
to describe the state of a particle and derive its future states. The state of a particle has to
be more richly endowed and described by a wave function or state function ψ(q, t) where q
is a position indicator. The state function (also known as a state vector) is a vector in the
infinite dimensional space.1

At this juncture, the state function or vector is analogous to when we study the control
theory of a highly complex system. In the state variable approach, the state of a control system
is described by the state vector, whose elements are variables that we think are important to
capture the state of the system. For example, the state vector v, describing the state of the
factory, can contain variables that represent the number of people in a factory, the number of
machines, the temperature of the rooms, the inventory in each room, etc. The state equation
of this factory can then be written as

d

dt
v(t) = A · v(t) (3.1.2)

1This concept will be further elaborated in Chapter 5.

23
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It describes the time evolution of the factory. The matrix A describes the coupling between
state variables as they evolve. It bears strong similarity to the time-dependent Schrödinger
equation, which is used to describe the time-evolution of the state function or the wave
function of an electron. In the wave function, a complex number is assigned to each location
in space.

Figure 3.1: The state of a particle in quantum mechanics is described by a state function,
which has infinitely many degrees of freedom.

In the Schrödinger equation, the wave function ψ(q, t) is a continuous function of of the
position variable q at any time instant t; hence, it is described by infinitely many numbers, and
has infinite degrees of freedom. The time evolution of the wave function ψ(q, t) is governed
by the Schrödinger equation. It was motivated by experimental evidence and the works of
many others such as Planck, Einstein, and de Broglie, who were aware of the wave nature of
a particle and the dual wave-particle nature of light.

3.2 Probabilistic Interpretation of the Wave Function

The wave function of the Schrödinger equation has defied an acceptable interpretation for
many years even though the Schrödinger equation was known to predict experimental out-
comes. Some thought that it represented an electron cloud, and that perhaps, an electron,
at the atomistic level, behaved like a charge cloud, and hence not a particle. The final, most
accepted interpretation of this wave function (one that also agrees with experiments) is that
its magnitude squared corresponds to the probability density function.2 In other words, the
probability of finding an electron in an interval [x, x+ ∆x] is equal to

|ψ(x, t)|2∆x (3.2.1)

For the 3D case, the probability of finding an electron in a small volume ∆V in the vicinity
of the point r is given by

|ψ(r, t)|2∆V (3.2.2)

2This interpretation is due to Born.
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Since the magnitude squared of the wave function represents a probability density function,
it must satisfy the normalization condition of a probability density function, viz.,∫

dV |ψ(r, t)|2 = 1 (3.2.3)

with its counterparts in 1D and 2D. The magnitude squared of this wave function is like some
kind of “energy” that cannot be destroyed. Electrons cannot be destroyed, and hence, charge
conservation is upheld by the Schrödinger equation.

3.3 Time Evolution of the Hamiltonian Operator

Motivated by the conservation of the “energy” of the wave function, we shall consider an
“energy” conserving system where the classical Hamiltonian will be a constant of motion. In
this case, there is no “energy” loss from the system. The Schrödinger equation that governs
the time evolution of the wave function ψ(r, t) is3[

− ~2

2m0
∇2 + V (r)

]
ψ(r, t) = i~

∂

∂t
ψ(r, t) (3.3.1)

The above can be written as

Ĥψ(r, t) = i~
∂ψ(r, t)

∂t
(3.3.2)

where Ĥ is the Hamiltonian operator.4 One can solve (3.3.2) formally to obtain

ψ(r, t) = e−i
Ĥ
~ tψ(r, t = 0) (3.3.3)

Since the above is a function of an operator, it has meaning only if this function acts on the
eigenfunctions of the operator Ĥ. As has been discussed in Chapter 2, Subsection 2.6.5, it
can be shown easily that if A · vi = λivi,

exp(A) · vi = exp(λi)vi (3.3.4)

To simplify the expression (3.3.3), it is best to express ψ(r, t = 0) as an eigenfunction
(eigenstate or eigenvector) of Ĥ, or linear superposition of its eigenfunctions. If Ĥ is a
Hermitian operator, then there exist eigenfunctions, or special wave functions, ψn, such that

Ĥψn(r) = Enψn(r) (3.3.5)

where En is real and ψn(r) are orthogonal to each other for different n. Analogous to the
Hermitian matrix operator, it can be shown that En is purely real and that the ψn are
orthogonal to each other. In this case, the time evolution of ψn from (3.3.3) is

ψ(r, t) = e−i
En
~ tψn(r) = e−iωntψn(r) (3.3.6)

3Please be reminded that this equation was postulated and was not derived.
4Rightfully, one should use the bra and ket notation to write this equation as Ĥ|ψ〉 = i~ d

dt
|ψ〉. In the less

rigorous notation in (3.3.2), we will assume that Ĥ is in the representation in which the state vector ψ is in.

That is if ψ is in coordinate space representation, Ĥ is also in coordinates space representation.
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In the above, En = ~ωn, or the energy En is related to frequency ωn via the reduced Planck
constant ~. The reduced Planck constant is related to the Planck constant by ~ = h/(2π)
where h = 6.626068× 10−34 J s. The fact that En is real means that ωn is real, or that the
magnitude squared of these functions are time independent or conserved, as is required by
their probabilistic interpretation.

We can write

ψ(r, t = 0) =
∑
n

cnψn(r) (3.3.7)

where cn can be found using the orthonormality relation of ψn. Then

ψ(r, t) = e−
iĤ
~ tψ(r, t = 0) =

∑
n

cne
− iĤ~ tψn(r) =

∑
n

cne
−iωntψn(r) (3.3.8)

since e−
iĤ
~ tψn(r) = e−iωntψn(r). It can be easily shown that the above, which is derived from

(3.3.3) is a solution to (3.3.2). Hence, (3.3.3) is the formal solution to (3.3.2).
Scalar variables that are measurable in classical mechanics, such as p and q, are known as

observables in quantum mechanics. They are elevated from scalar variables to operators in
quantum mechanics, denoted by a “ˆ” symbol here. In classical mechanics, for a one particle
system, the Hamiltonian is given by

H = T + V =
p2

2m
+ V (3.3.9)

The Hamiltonian contains the information from which the equations of motion for the particle
can be derived. But in quantum mechanics, this is not sufficient, and H becomes an operator

Ĥ =
p̂2

2m
+ V̂ (3.3.10)

This operator works in tandem with a wave function ψ to describe the state of the particle.
The operator acts on a wave function ψ(t), where in the one dimensional case and in the
coordinate q representation, is ψ(q, t). When ψ(q, t) is an eigenfunction with energy En, it
can be expressed as

ψ(q, t) = ψn(q)e−iωnt (3.3.11)

where En = ~ωn. The Schrödinger equation for ψn(q) then becomes5

Ĥψn(q) =

(
p̂2

2m
+ V̂

)
ψn(q) = Enψn(q) (3.3.12)

For simplicity, we consider an electron moving in free space where it has only a constant
kinetic energy but not influenced by any potential energy. In other words, there is no force
acting on the electron. In this case, V̂ = 0, and this equation becomes

p̂2

2m
ψn(q) = Enψn(q) (3.3.13)

5For the Schrödinger equation in coordinate space, V̂ turns out to be a scalar operator or a diagonal
operator.



Quantum Mechanics—Some Preliminaries 27

It has been observed by de Broglie that the momentum of a particle, such as an electron
which behaves like a wave, has a momentum

p = ~k (3.3.14)

where k = 2π/λ is the wavenumber of the wave function. This motivates that the operator p̂
can be expressed by

p̂ = −i~ d
dq

(3.3.15)

in the coordinate space representation. This is chosen so that if an electron is described by
a state function ψ(q, t) = c1e

ikq−iωt, then p̂ψ(q, t) = ~kψ(q, t). The above motivation for the
form of the operator p̂ is highly heuristic. We will see other reasons for the form of p̂ when
we study the correspondence principle and the Heisenberg picture.

Equation (3.3.13) for a free particle is then

− ~2

2m

d2

dq2
ψn(q) = Enψn(q) (3.3.16)

Since this is a constant coefficient ordinary differential equation, the solution is of the form

ψn(q) = e±iknq (3.3.17)

which when used in (3.3.16), yields

~2k2
n

2m
= En (3.3.18)

Namely, the kinetic energy T of the particle is given by

T =
~2k2

n

2m
(3.3.19)

where p = ~kn is in agreement with de Broglie’s finding.
In many problems, the operator V̂ is a scalar operator in coordinate space representation

which is a scalar function of position V (q). This potential traps the particle within it acting
as a potential well. In general, the Schrödinger equation for a particle becomes[

− ~2

2m

∂2

∂q2
+ V (q)

]
ψ(q, t) = i~

∂

∂t
ψ(q, t) (3.3.20)

For a particular eigenstate with energy En as indicated by (3.3.11), it becomes[
− ~2

2m

d2

dq2
+ V (q)

]
ψn(q) = Enψn(q) (3.3.21)

The above is an eigenvalue problem with eigenvalue En and eigenfunction ψn(q). These
eigenstates are also known as stationary states, because they have a time dependence indicated
by (3.3.11). Hence, their probability density functions |ψn(q, t)|2 are time independent.
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These eigenfunctions correspond to trapped modes (or bound states) in the potential well
defined by V (q) very much like trapped guided modes in a dielectric waveguide. These modes
are usually countable and they can be indexed by the index n.

In the special case of a particle in free space, or the absence of the potential well, the
particle or electron is not trapped and it is free to assume any energy or momentum indexed
by the continuous variable k. In (3.3.18), the index for the energy should rightfully be k and
the eigenfunctions are uncountably infinite. Moreover, the above can be generalized to two
and three dimensional cases.

3.4 Simple Examples of Time Independent Schrödinger
Equation

At this juncture, we have enough knowledge to study some simple solutions of time-independent
Schrödinger equation such as a particle in a box, a particle impinging on a potential barrier,
and a particle in a finite potential well.

3.4.1 Particle in a 1D Box

Consider the Schrödinger equation for the 1D case where the potential V (x) is defined to be
a function with zero value for 0 < x < a (inside the box) and infinite value outside this range.
The Schrödinger equation is given by[

− ~2

2m

d2

dx2
+ V (x)

]
ψ(x) = Eψ(x) (3.4.1)

where we have replaced q with x. Since V (x) is infinite outside the box, ψ(x) has to be zero.
Inside the well, V (x) = 0 and the above equation has a general solution of the form

ψ(x) = A sin(kx) +B cos(kx) (3.4.2)

The boundary conditions are that ψ(x = 0) = 0 and ψ(x = a) = 0. For this reason, a viable
solution for ψ(x) is

ψ(x) = A sin(kx) (3.4.3)

where k = nπ/a, n = 1, . . . ,∞. There are infinitely many eigensolutions for this problem.
For each chosen n, the corresponding energy of the solution is

En =
(~nπ/a)2

2m
(3.4.4)

These energy values are the eigenvalues of the problem, with the corresponding eigenfunctions
given by (3.4.3) with the appropriate k. It is seen that the more energetic the electron is
(high En values), the larger the number of oscillations the wave function has inside the box.
The solutions that are highly oscillatory have higher k values, and hence, higher momentum
or higher kinetic energy. The solutions which are even about the center of the box are said
to have even parity, while those that are odd have odd parity.
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One other thing to be noted is that the magnitude squared of the wave function above
represents the probability density function. Hence, it has to be normalized. The normalized
version of the wave function is

ψ(x) =
√

2/a sin(nπx/a) (3.4.5)

Moreover, these eigenfunctions are orthonormal to each other, viz.,∫ a

0

dxψ∗n(x)ψm(x) = δnm (3.4.6)

The orthogonality is the generalization of the fact that for a Hermitian matrix system, where
the eigenvectors are given by

H · vi = λivi (3.4.7)

then it can be proven easily that

v†j · vi = Cjδij (3.4.8)

Moreover, the eigenvalues are real.

Figure 3.2: The wave functions of an electron trapped in a 1D box (from DAB Miller).

3.4.2 Particle Scattering by a Barrier

In the previous example, it is manifestly an eigenvalue problem since the solution can be
found only at discrete values of En. The electron is trapped inside the box. However, in an
open region problem where the electron is free to roam, the energy of the electron E can be
arbitrary. We can assume that the potential profile is such that V (x) = 0 for x < 0 while
V (x) = V0 for x > 0. The energy of the electron is such that 0 < E < V0. On the left side,
we assume an electron coming in from −∞ with the wave function described by A exp(ik1x).
When this wave function hits the potential barrier, a reflected wave ensues, and the general
solution on the left side of the barrier is given by

ψ1(x) = A1e
ik1x +B1e

−ik1x (3.4.9)
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where (~k1)2/(2m) = E is the kinetic energy of the incident electron. On the right side,
however, the Schrödinger equation to be satisfied is

[
− ~2

2m

d2

dx2

]
ψ2(x) = (E − V0)ψ2(x) (3.4.10)

The solution of the transmitted wave on the right is

ψ2(x) = A2e
ik2x (3.4.11)

where

k2 =
√

2m(E − V0)/~ (3.4.12)

Given the known incident wave amplitude A1, we can match the boundary conditions at x = 0
to find the reflected wave amplitude B1 and the transmitted wave amplitude A2. By eye-
balling the Schrödinger equation (3.4.1), we can arrive at the requisite boundary conditions

are that ψ and d
dxψ(x) are continuous at x = 0. This is because d2

dx2ψ(x) in (3.4.1) has to be

a finite quantity. Hence, d
dxψ(x) and ψ(x) cannot have jump discontinuities.

Since E < V0, k2 is pure imaginary, and the wave is evanescent and decays when x→∞.
This effect is known as tunneling. The electron as a nonzero probability of being found inside
the barrier, albeit with decreasing probability into the barrier. The larger V0 is compared to
E, the more rapidly decaying is the wave function into the barrier.

However, if the electron is energetic enough so that E > V0, k2 becomes real, and then
the wave function is no more evanescent. It penetrates into the barrier; it can be found even
a long way from the boundary.

Figure 3.3: Scattering of the electron wave function by a 1D barrier (from DAB Miller).

It is to be noted that the wave function in this case cannot be normalized as the above
represents a fictitious situation of an electron roaming over infinite space. However, the above
example illustrates the wave physics at the barrier.
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3.4.3 Particle in a Potential Well

If the potential profile is such that

V (x) =


V1 if x < −a/2, region 1

V2 = 0 if |x| < a/2, region 2

V3 if x > a/2, region 3

(3.4.13)

then there can be trapped modes (or bound states) inside the well represented by standing
waves, whereas outside the well, the waves are evanescent for eigenmodes for which E < V1

and E < V3.

The wave function for |x| < a/2 can be expressed as

ψ2(x) = A2 sin(k2x) +B2 cos(k2x) (3.4.14)

where k2 =
√

2mE/~. In region 1 to the left, the wave function is

ψ1(x) = A1e
α1x (3.4.15)

where α1 =
√

2m(V1 − E)/~. The wave has to decay in the left direction. Similar, in region
3 to the right, the wave function is

ψ3(x) = B3e
−α3x (3.4.16)

where α3 =
√

2m(V3 − E)/~. It has to decay in the right direction. Four boundary conditions
can be imposed at x = ±a/2 to eliminate the four unknowns A1, A2, B2, and B3. These four
boundary conditions are continuity of the wave function ψ(x) and its derivative dψ(x)/dx at
the two boundaries. However, non-trivial eigensolutions can only exist at selected values of
E which are the eigenvalues of the Schrödinger equation. The eigenequation from which the
eigenvalues can be derived is a transcendental equation.

To illustrate this point, we impose that ψ is continuous at x = ±a/2 to arrive at the
following two equations:

A1e
−α1a/2 = −A2 sin(k2a/2) +B2 cos(k2a/2) (3.4.17)

A3e
−α3a/2 = A2 sin(k2a/2) +B2 cos(k2a/2) (3.4.18)

We further impose that ∂ψ/∂x is continuous at x = ±a to arrive at the following two equa-
tions:

α1A1e
−α1a/2 = k2A2 cos(k2a/2) + k2B2 sin(k2a/2) (3.4.19)

−α3A3e
−α3a/2 = k2A2 cos(k2a/2)− k2B2 sin(k2a/2) (3.4.20)

The above four equations form a matrix equation

M · v = 0 (3.4.21)
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where v = [A1, A2, B2, B3]t, and the elements of M, which depend on E (because k2 =√
2mE/~, α1 =

√
2m(V1 − E)/~, and α3 =

√
2m(V3 − E)/~), can be gleaned off the above

equations. Non-trivial solutions exists for v only if

det
(
M(E)

)
= |M(E)| = 0 (3.4.22)

The above is the transcendental eigenequation from which the eigenvalues E can be derived.
The nontrivial solutions for v are in the null space of M. Having known v = [A1, A2, B2, B3]t,
the eigenfunctions of the Schrödinger equation can be constructed. Notice that v is known
to an arbitrary multiplicative constant. The normalization of the eigenfunction will pin down
the value of this constant.

When the potential well is symmetric such that V1 = V3 = V0, then the solutions can be
decomposed into odd and even solutions about x = 0. In this case, either A2 = 0 for even
modes, or B2 = 0 for odd modes. Furthermore, A1 = ±B3 for these modes. The problem
then has two unknowns, and two boundary conditions at one of the interfaces suffice to deduce
the eigenequation.

The above problem is analogous to the 1D dielectric waveguide problem in classical elec-
tromagnetics. In most textbooks, the transcendental eigenequation is solved using a graphical
method, which can be done likewise here. The plot of the eigenmodes and their energy levels
are shown in Figure 3.4. It is an interesting example showing that a trapped electron exists
with different energy levels. The more energetic (more kinetic energy) the electron is, the
higher the energy level. For the case when E > V0, the wave function is not evanescent
outside the well, and the electron is free to roam outside the well.

Modern technology has allowed the engineering of nano-structures so small that a quantum
well can be fabricated. Quantum well technology is one of the emerging nano-technologies.
It will be shown later in the course that an electron wave propagating in a lattice is like
an electron wave propagating in vacuum but with a different effective mass and seeing a
potential that is the potential of the conduction band. The quantum wells are fabricated
with III-V compound, for example, with alloys of the form AlxGa1−xAs forming a ternary
compound. They have different values of valence and conduction band depending on the
value of x. By growing heterostructure layers with different compounds, multiple quantum
wells can be made. Hence, the energy levels of a quantum well can also be engineered so that
laser technology of different wavelengths can be fabricated.6

In the case of a hydrogen atom, the Coulomb potential around the proton at the nucleus
yields a potential well described by −q2/(ε4πr). This well can trap an electron into various
eigenstates, yielding different electronic orbitals. The Schrödinger equation has predicted the
energy levels of a hydrogen atom with astounding success.

3.5 The Quantum Harmonic Oscillator–A Preview

The pendulum, a particle attached to a spring, or many vibrations in atoms and molecules
can be described as a harmonic oscillator. Hence, the harmonic oscillator is one of the most

6J. H. Davis, The Physics of Low Dimensional Semiconductors: An Introduction, Cambridge U Press,
1998.
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Figure 3.4: Trapped modes representing the electron wave functions inside a 1D potential
well (from DAB Miller).

important examples in quantum mechanics. Its quantum mechanical version can be described
by the 1D Schrödinger equation.

The classical equation for a harmonic oscillator is given by

m
d2z

dt2
= −Kz (3.5.1)

The above is Newton’s law, and K is the spring constant, and the force provided by the spring
is Kz. We can rewrite the above as

d2z

dt2
= −ω2

0z (3.5.2)

where ω0 =
√
K/m, andm is the mass of the particle. The above has a time harmonic solution

of the form exp(±iω0t) where ω0 is the oscillation frequency. Since the force F = −∂V/∂z,
the potential energy of a particle attached to a spring is easily shown to be given by

V (z) =
1

2
mω2

0z
2 (3.5.3)

Consequently, the above potential energy can be used in the Schrödinger equation to describe
the trapping of wave modes (or bound states). The kinetic energy of the particle is described
by a term proportional to the square of the momentum operator. Hence, the corresponding
1D Schrödinger equation is[

− ~2

2m

d2

dz2
+

1

2
mω2

0z
2

]
ψn(z) = Enψn(z) (3.5.4)

with a parabolic potential well. It turns out that this equation has closed-form solutions,
yielding the wave function for an eigenstate as given by

ψn(z) =

√
1

2nn!

√
mω0

π~
e−

mω0
2~ z2

Hn

(√
mω0

~
z

)
(3.5.5)
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where Hn(x) is a Hermite polynomial, and the wave function is Gaussian tapered by e−
mω0
2~ z2

.
The energy of the eigenstate is given by

En =

(
n+

1

2

)
~ω0 (3.5.6)

The energy levels are equally spaced ~ω0 apart. Even the lowest energy state, the ground
state, has a nonzero energy of ~ω0/2 known as the zero-point energy. The higher energy states
correspond to larger amplitudes of oscillation, and vice versa for the lower energy states. In
order to kick the quantum harmonic oscillator from the low energy state to a level above, it
needs a packet of energy of ~ω0, the quantization energy of a photon. The physics of quan-
tized electromagnetic oscillations (photons) and quantized mechanical oscillations (phonons)
is intimately related to the quantum harmonic oscillator.

It is to be noted that if |ψn(z)|2 has the meaning of probability density function, then the
average location, or the expectation value of the location, of the oscillating particle for these
eigenstates is given by

〈z〉 =

∫ ∞
−∞

dzz|ψn(z)|2 (3.5.7)

Since z is an odd function while |ψn(z)|2 is an even function of z, the above integral is always
zero. Since the potential energy of the particle is proportional to z2, it is seen that

〈z2〉 =

∫ ∞
−∞

dzz2|ψn(z)|2 (3.5.8)

is not zero. Therefore, the potential energy of the particle for each of these eigenmodes is
not zero, while the average location is zero. Moreover, their associated probability density
functions are time-independent. These stationary states hence do not have a classical coun-
terpart, and are termed non-classical states. They are also called the photon-number states
since the n-th state corresponds to having the energy of n photons each with energy of ~ω0.
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Figure 3.5: Sketch of the eigenstates, energy levels, and the potential well of a quantum
harmonic oscillator (picture from DAB Miller).
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Chapter 4

Time-Dependent Schrödinger
Equation

4.1 Introduction

Each eigenstate of Schrödinger equation has its own time dependence of exp(−iωnt). When
we consider one eigenstate alone, its time dependence is unimportant, as the time dependence
disappears when we convert the wavefunction into a probability density function by taking
its magnitude squared. Moreover, the absolute frequency of an eigenstate is arbitrary. Hence,
the probability density function is quite uninteresting. This is an antithesis to the classical
harmonic oscillator where the position of the particle moves with respect to time.

However, when a quantum state is described by a wavefunction which is a linear superpo-
sition of two eigenstates, it is important that we take into account their individual frequency
value and time dependence. The two eigenstates will “beat” with each other to produce a
difference in frequency when we take the magnitude squared of the wavefunction.

4.2 Quantum States in the Time Domain

Consider a quantum state which is a linear superposition of two eigenstates

ψ(r, t) = cae
−iωatψa(r) + cbe

−iωbtψb(r) (4.2.1)

where ca and cb are properly chosen to normalize the corresponding probability density func-
tion. Then the probability function is

|ψ(r, t)|2 = |ca|2|ψa(r)|2 + |cb|2|ψb(r)|2 + 2<e
[
cac
∗
bψa(r)ψ∗b (r)e−i(ωa−ωb)t

]
(4.2.2)

It is clearly time varying. We are seeing the motion of the particle through the potential well.

37
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Figure 4.1: The time evolution of the linear superposition of the first two eigenstates of the
simple quantum harmonic oscillator. (i) Beginning of a period (solid line). (ii) One quarter
and three quarters way through the period (dotted line). (iii) Half way through the period
(picture from DAB Miller).

4.3 Coherent State

The eigenstates of a quantum harmonic oscillator do not resemble its classical state. First,
its magnitude squared is time independent, whereas a classical harmonic oscillator is time
varying. In order to see the classical state emerging from the quantum harmonic oscillator
eigenstates, we need to take a judicious linear superposition of them. Such a state is called
the coherent state.1 The coherent state is given by

ψN (ξ, t) =

∞∑
n=0

cNne
−i(n+1/2)ω0tψn(ξ) (4.3.1)

where ξ =
√
mω0/~z, and cNn =

√
Nne−N/n!. 2 It forms a time-varying wave packet that

emulates the motion of the classical harmonic oscillators such as a pendulum. The total
energy of this wave packet is given by (N + 1/2)~ω0 as shall be shown later. The larger N
is, the more energy the particle has, and the closer is the coherent state to a classical state.
A plot of the coefficient |cNn|2 = Pn as a function of n is shown in Fig. 4.2. Here, Pn is the
probability of finding the state in the stationary state ψn. Notice the the probability of being
in the eigenstates peak around n = N , the dominant eigenstate of the packet.

1The state was derived by R. Glauber who won the Nobel Prize in 2005 for his many contributions to
quantum optics.

2The coefficient is also written as e−|α|
2/2 αn√

n!
where N = |α|2.
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Figure 4.2: The plot of |cNn|2 = Pn as a function of n for different values of N .

As shall be seen, as N increases, the coherent state looks more like a localized wave
packet describing a particle oscillating back and forth time harmonically. This is the case for
a particle traveling in a parabolic potential well. Even when a particle is traveling in vacuum,
it should be described by a localized wavefunction, such as a Gaussian wave packet. The
study of the Gaussian wave packet is given in the Appendix. It can be seen that the classical
limit emerges when the momentum of the particle becomes very large.

4.4 Measurement Hypothesis and Expectation Value

The wavefunction of a quantum system can be written as a linear superposition of the sta-
tionary states

ψ(r, t) =
∑
n

cn(t)ψn(r) (4.4.1)

where cn(t) = cn(0)e−iωnt with En = ~ωn. The magnitude squared of this wavefunction
should integrate to one due to its probabilistic interpretation. In other words,∫

V

|ψ(r, t)|2dr =

∫
V

∑
n

cn(t)ψn(r)
∑
n′

c∗n′(t)ψ
∗
n′(r)dr = 1 (4.4.2)

Exchanging the order of integration and summations, we arrive at∫
V

|ψ(r, t)|2dr =
∑
n

∑
n′

cn(t)c∗n′(t)

∫
V

ψn(r)ψ∗n′(r)dr (4.4.3)
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Figure 4.3: Coherent state for different values of N (picture from DAB Miller).

Using the orthonormality of the eigenstates, viz.,
∫
V
ψn(r)ψ∗n′(r)dr = δnn′ , we arrive at the

fact that ∑
n

|cn(t)|2 = 1 (4.4.4)

Since the squares of the magnitudes add up to one, they can be assigned probabilistic inter-
pretation as well. Hence, Pn = |cn(t)|2 represents the probability of finding the electron in
eigenstate n.

The quantum measurement hypothesis states that before the measurement, the electron
lives as a linear superposition of different eigenstates. After the measurement, the electron
collapses into one of the eigenstates, say the n eigenstate, with probability proportional to
|cn(t)|2.

The above can go further by saying that an electron is described by a wavefunction where
its position is indeterminate: it can be found any place where the wavefunction is nonzero.
Its probability of being found is proportional to the magnitude squared of the wavefunction.
However, once the measurement is made to determine the location of the electron, the elec-
tron’s position collapses to one location as is discovered by the experiment. Its position is
determinate after the measurement.

One can think of the electron to be like “ghost” or “angel” which could exist as a linear
superposition of many states before a measurement. After the measurement, it collapses to
the state “discovered” by the measurement.

Due to this probabilistic interpretation, the expected energy of the quantum system is
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given by

〈E〉 =
∑
n

EnPn =
∑
n

En|cn(t)|2 (4.4.5)

The above is the expectation value of E. Notice that for the eigenstate cn(t) ∝ e−iωnt and
hence, |cn(t)|2 is time independent. The above expectation of the energy is a constant. This
means that the quantum system is energy conserving, namely, it cannot lose energy, for
instance, due to radiation. This is because this is an isolated quantum system. In order
for this system to lose energy, it has to be coupled with other quantum systems, which is a
subject of later study.

For the coherent state, the expectation value of E is

〈E〉 =

∞∑
n=0

En
Nne−N

n!
(4.4.6)

= ~ω0

[ ∞∑
n=0

n
Nne−N

n!

]
+

~ω0

2
(4.4.7)

=

(
N +

1

2

)
~ω0 (4.4.8)

where we have made use of the fact that En = (n+ 1/2)~ω0, and that the above summations
sum to N and 1.3 Hence, the energy of the coherent state is that of N photons. The larger
N is, the closer it is to a classical state.

The above expected energy value can also be found by taking the expectation of the
Hamiltonian operator, viz.,

〈E〉 =

∫
drψ∗(r, t)Ĥψ(r, t) (4.4.9)

The above equality can be easily shown by substituting (4.4.1) into the right-hand side and
making use of the fact that ψn(r) is the eigenfunction of the Hamiltonian operator

Ĥ = − ~2

2m
∇2 + V (r) (4.4.10)

In general, a quantity that is measurable, like the energy E, is replaced by an operator Ĥ
in quantum mechanics. Such operators are called observables, such as momentum, position,
etc. The relation between the classical value of an observable and its quantum mechanical
counterpart, the operator, is via the expectation relation, viz.,〈

Â
〉

=

∫
drψ∗(r, t)Âψ(r, t) (4.4.11)

3It can be shown easily that
∑∞

0
Nn

n!
= eN . Using the fact that nNn = N ∂

∂N
Nn, it can be shown that∑∞

0 nNn = NeN .
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The above reduces to a scalar number, but it could still be time dependent. It is also the
bridge between classical quantities and quantum mechanical entities.

It is seen that 〈
Ĥ
〉

=

∫
drψ∗(r, t)Ĥψ(r, t) = 〈E〉 =

∑
n

EnPn (4.4.12)

in accordance with (4.4.5) and (4.4.9). One can also do a direct substitution of (4.4.1) into
the above to arrive at〈

Ĥ
〉

=

∫
dr
∑
n′

c∗n′(t)ψ
∗
n′(r)Ĥ

∑
n

cn(t)ψn(r) =
∑
n′

∑
n

c∗n′(t)cn(t)En

∫
V

ψ∗n′(r)ψn(r)dr

=
∑
n

|cn(t)|2En =
∑
n

EnPn = 〈E〉 (4.4.13)

where Ĥψn(r) = Enψn(r) and the orthogonality of the eigenfunctions have been used. Hence,
the expectation of the Hamiltonian operator with respect to a quantum state is the average
of its eigenvalues with respect to the quantum state.

4.4.1 Uncertainty Principle–A Simple Version

The uncertainty principle is asserted by the fact that Fourier transform of a Gaussian function
is another Gaussian function. For instance, if we have a wave packet that is formed by
superposing waves with different k or momentum, we can express it as

ψ(z) =

∫ ∞
−∞

ψ̃(k)eikzdk (4.4.14)

where

ψ̃(k) = Ce−( k−k0
2∆k )

2

(4.4.15)

The above represents a Gaussian-tapered function with a spread of wavenumbers centered
around k = k0. It can be Fourier transformed in closed form. First, we find the Fourier
transform of a Gaussian, namely,

ψg(z) =

∫ ∞
−∞

e−k
2

eikzdk =

∫ ∞
−∞

e−(k−iz/2)2

e−z
2/4dk = e−z

2/4

∫ ∞
−∞

e−η
2

dη (4.4.16)

The second equality follows by completing the square of the exponent. The last equality
follows by a change of variable by letting k − iz/2 = η. The integration of a Gaussian
function can be obtained in closed form.4 Subsequently,

ψg(z) = e−z
2/4
√
π (4.4.17)

4The integral can be evaluated in closed form by using the identity that I =
∫∞
−∞ dxe−x

2
=
√
π. This can

be proved by noticing that I2 =
∫∞
−∞ dxe−x

2 ∫∞
−∞ dye−y

2
=

∫∫∞
−∞ dxdye−(x2+y2) = 2π

∫∞
0 ρdρe−ρ

2
= π.

The last integral can be integrated in closed form.
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proving the fact that the Fourier transform of a Gaussian is a Gaussian. The scaling property
of Fourier transform says that

ψs(z) =

∫ ∞
−∞

ψ̃(k/a)eikzdk = a

∫ ∞
−∞

ψ̃(k/a)ei(k/a)azd(k/a) = aψ(az) (4.4.18)

The above implies that if ψ(z) is the Fourier transform of ψ̃(k), then aψ(az) is the Fourier
transform of ψ̃(k/a). This together with the shifting property of Fourier transform allows us
to deduce that the Fourier transform of (4.4.15) is

ψ(z) = 2∆kCe−(∆kz)2+ik0z (4.4.19)

The probability density functions are proportional to the magnitude squared of the above. The
first pulse, whose probability density function is given by |ψ̃(k)|2 = C2e−(k−k0)2/[2(∆k)2], has

standard deviation of ∆k.5 The standard deviation of |ψ(z)|2 ∝ e−(2∆kz)2/2 is ∆z = 1/(2∆k).
The product of these two standard deviations yields

∆k∆z =
1

2
(4.4.20)

or

∆p∆z =
~
2

(4.4.21)

4.4.2 Particle Current

It turns out that even though the state of an electron is defined by a wavefunction, other
equations do not see this wavefunction. For instance, Maxwell’s equations, will produce
electric field from sources, but they will only produce the electric field from the charge cloud
and the current produced by the charge cloud. We see that for stationary states of a trapped
electron in a potential well, the charge cloud is static. Hence, it will not radiate according
to electromagnetic theory. This resolves the conflict in early days as to why the electron,
supposedly “orbiting” around the nucleus of an atom, does not radiate.

However, when an electron is in more than one stationary state, the charge cloud is time
varying, and can potentially couple to an external electric field and radiate.6 For conservation
of charge, we have the relation that

∂ρp
∂t

= −∇ · Jp (4.4.22)

where ρp is the particle density, and Jp is the particle current density. The particle density
ρp(r, t) = |ψ(r, t)|2. We can take the time derivative of ρp to yield

∂

∂t
[ψ∗(r, t)ψ(r, t)] =

∂ψ∗(r, t)

∂t
ψ(r, t) + ψ∗(r, t)

∂ψ(r, t)

∂t
(4.4.23)

5A Gaussian PDF of the form Ce−x
2/(2σ2) has a standard deviation of σ.

6We will learn how to treat such coupling later on.



44 Quantum Mechanics Made Simple

We can use Schrödinger equation to replace the time derivatives on the right-hand side to get

∂

∂t
[ψ∗(r, t)ψ(r, t)] = − i

~

(
ψ∗Ĥψ − ψĤ∗ψ∗

)
(4.4.24)

Substituting in for the definition of the Hamiltonian operator, we have further that

∂

∂t
[ψ∗(r, t)ψ(r, t)] =

i~
2m

(
ψ∗∇2ψ − ψ∇2ψ∗

)
(4.4.25)

∂

∂t
[ψ∗(r, t)ψ(r, t)] = − i~

2m
∇ · (ψ∇ψ∗ − ψ∗∇ψ) (4.4.26)

Hence, we can define the particle current as

Jp =
i~
2m

(ψ∇ψ∗ − ψ∗∇ψ) (4.4.27)

When a stationary eigenstate is substituted into the above, due to the product of the function
and its complex conjugate above, the particle current becomes time independent. Hence,
stationary states can only give rise to non-time-varying current (static or DC current), and
such current does not radiate according to electromagnetic theory.
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Appendix

A Introduction to Gaussian Wave Packet

In order to relate the wave nature to the particle nature of an object, it is necessary to obtain
a wave packet picture of the object. Experimental observation has indicated that electrons are
highly localized objects, so are photons. A wavefunction with a pure or single wavenumber
k has equal amplitude everywhere. According to the probabilistic interpretation of quantum
mechanics, it is untenable physically to think of a particle as all pervasive and can be found
equally likely everywhere. A photon wave can have many k wavenumbers, and they can be
linearly superposed to form a localized photon wave packet. Since the E-k relationship of
the photon wave is linear (or almost linear in the material-media case), the formation of such
a wave packet is quite straightforward. It is less clear for an electron wave, since the E-k
relationship is nonlinear.

In this appendix, we will explain the particle nature of an electron in the classical limit
when the momentum of the electron becomes large. One expects that the wavefunction
resembles that of a localized particle in this limit so that the electron is found with high
probability only in a confined location. This understanding can be achieved by studying the
Gaussian wave packet solution of Schrödinger equation.

When the Schrödinger equation is solved in vacuum for electron, the solution is

eik·r

This unlocalized solution means that the electron can be everywhere. A more realistic wave-
function for an electron is a wave packet which is localized. This is more akin to the motion
that an electron is a localized particle. A wave packet can be constructed by linear superpos-
ing waves of different momenta ~k or different energies ~ω. We will derive the Gaussian wave
packet solution to Schrödinger equation. This can be constructed by studying the solution to
the wave equation.

B Derivation from the Wave Equation

It is well known that the wave equation(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ k2

)
φ (x, y, z) = 0 (B1)

admits solution of the form

φ (x, y, z) = C
e±ik
√
x2+y2+(z−ib)2√

x2 + y2 + (z − ib)2
(B2)

for √
x2 + y2 + (z − ib)2 6= 0 (B3)
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The above corresponds to a spherical wave where the source point is located in the complex
coordinates x = 0, y = 0, and z = ib. It was first suggested by G. Deschamps. From the
above, it is quite clear that, after letting z = vt,

φ (x, y, vt) = A
e±ik
√
x2+y2+(vt−ib)2√

x2 + y2 + (vt− ib)2
(B4)

is a solution to (
∂2

∂x2
+

∂2

∂y2
+

1

v2

∂2

∂t2
+ k2

)
φ (x, y, vt) = 0 (B5)

The above equation can be factored(
v−1∂t − i

√
k2 + ∂2

x + ∂2
y

)(
v−1∂t + i

√
k2 + ∂2

x + ∂2
y

)
φ (x, y, vt) = 0 (B6)

where ∂t = ∂/∂t, ∂2
x = ∂2/∂x2 and so on. In the above, function of an operator has meaning

only when the function is Taylor expanded into an algebraic series. One can assume that
k2 →∞, while ∂2

x and ∂2
y are small.7 Taylor expanding the above and keeping leading order

terms only, we have(
v−1∂t − ik −

i

2k

(
∂2
x + ∂2

y

))(
v−1∂t + ik +

i

2k

(
∂2
x + ∂2

y

))
φ (x, y, vt) ∼= 0 (B7)

In (B4), we can let8 |vt− ib|2 � x2 + y2 to arrive at the approximation

φ (x, y, vt) ≈ Ae
±
(
ik(vt−ib)+ik x

2+y2

vt−ib

)
vt− ib

(B8)

It can be shown that when we pick the plus sign above in the ± sign, the above is the exact
solution to (

v−1∂t − ik −
i

2k

(
∂2
x + ∂2

y

))
φ+ (x, y, vt) = 0 (B9)

where

φ+ (x, y, vt) = Aeik(vt−ib) e
ik x2+y2

2(vt−ib)

2 (vt− ib)
= eik(vt−ib)ψ (x, y, t) (B10)

and

ψ (x, y, t) = −A0
ibeik

x2+y2

2(vt−ib)

(vt− ib)
(B11)

Furthermore, ψ (x, y, t) is an exact solution to(
v−1∂t −

i

2k

(
∂2
x + ∂2

y

))
ψ (x, y, t) = 0 (B12)

7This is known as the paraxial wave approximation. It implies that the variation of the solution is mainly
in the vt direction with slow variation in the x and y directions.

8It can be shown that when this is valid, the paraxial wave approximation used in (B7) is good.
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If we multiply the above by i~v, the above becomes(
i~∂t +

~v
2k

(
∂2
x + ∂2

y

))
ψ (x, y, t) = 0 (B13)

By letting v = ~k/m, the above becomes(
i~∂t +

~2

2m

(
∂2
x + ∂2

y

))
ψ (x, y, t) = 0 (B14)

which is just Schrödinger equation. Equation (B11) represents the Gaussian wave packet
solution of Schrödinger equation. It can be studied further to elucidate its physical contents.

C Physical Interpretation

In (B11), one can write

k
(
x2 + y2

)
2 (vt− ib)

=
k
(
x2 + y2

)
(vt+ ib)

2 (v2t2 + b2)
=
k
(
x2 + y2

)
2R

+ i
x2 + y2

W 2
(C1)

where

R =
v2t2 + b2

vt
, W 2 =

2b

k

(
1 +

v2t2

b2

)
(C2)

Then Gaussian wave packet can be more suggestively written as

ψ (x, y, t) =
A0√

1 + v2t2/b2
e−

x2+y2

W2 eik
x2+y2

2R e−iϕ(t) (C3)

where
ϕ(t) = tan−1 (vt/b) (C4)

The above reveals a wave packet which is Gaussian tapered with width W and modulated
by oscillatory function of space and time. However, the width of this packet is a function of
time as indicated by (C2).

At vt = 0, the width of the packet is given by

W0 =

√
2b

k
, or b =

1

2
kW 2

0 (C5)

This width can be made independent of k if b is made proportional to k. Nevertheless, as
time progresses with vt > 0, the width of the packet grows according to (C2). However, to
maintain a fixed-width W0, it is necessary that b→∞ as k →∞. Subsequently, the effect of
v2t2/b2 becomes small in (C2) as b → ∞. This means that the width of the Gaussian wave
packet remains almost constant for the time when vt ≤ b, but b is a large number proportional
to k. The duration over which the Gaussian wave packet’s width remains unchange becomes
increasingly longer as k becomes larger.
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In the above, ~k represents the momentum of a particle. When the particle carries high
momentum, it can be represented by a Gaussian wave packet that hardly changes in shape
with respect to time. This is what is expected of a classical picture of a moving particle: the
Gaussian wave packet does reproduce the classical picture of a high momentum particle.

It is quite easy to design a wave packet for a photon that does not spread with time by
linear superposing waves with different frequencies. This is because the ω-k diagram (or E-k
diagram, since E = ~ω) for photons is a straight line. It implies that all waves with different
k’s travel with the same phase velocity. These Fourier modes are locked in phase, and the
pulse shape does not change as the wave packet travels.

k

ω

Figure C1: ω − k diagram for a photon wave which is a straight line.

But for electron wave in a vacuum, the ω-k diagram is quadratic. It implies that waves
with different k numbers travel with different phase velocity, giving rise to distortion of the
pulse shape. But if we have a narrow band pulse operating in the high k regime, the ω-k
diagram is quasi-linear locally, and there should be little pulse spreading. Hence, one can
construct a quasi-distortionless pulse in the high k regime.

k

ω

Δk

Δω

Figure C2: ω − k diagram of an electron wave in vacuum.
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D Stability of the Plane Wave Solution

It is quite obvious from our understanding of quantum mechanics, wave packets, and coher-
ence, that the plane wave solution eikx is not stable as k →∞. One can always express

eikx =

∫ ∞
−∞

dx′eikx
′
δ(x− x′) (D1)

If one can think of δ(x − x′) as the limiting case of a wave packet, the above implies that
a plane wave can be expanded as a linear superposition of wave packets at each location x,
but bearing a phase exp(ikx). As k → ∞, this phase is rapidly varying among the different
wave packets. Hence, their coherence is extremely difficult to maintain, and upset easily
by coupling to other quantum systems that exists in the environment. In other words, the
particle cannot be stably maintained in the plane-wave state classically: it has to collapse to
a wave-packet state. Consequently, classically, particles are localized when its momentum k
becomes large.
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Chapter 5

More Mathematical
Preliminaries

5.1 A Function is a Vector

A function is actually an equivalence of a vector. In linear algebra, we denote a vector as
v = [v1, v2, v3, . . . vN ]t. A short-hand notation for this vector is vj where j = 1, . . . , N . But
for a function f(x), the countably finite index j in vj is now replaced by an uncountably
infinite (nondenumerable) set of indices denoted by x. Hence, we can think of f(x) as a
vector in an infinite dimensional vector space. An inner product in linear algebra is written
as

v† · u =

N∑
j=1

v∗juj (5.1.1)

The analogue of the above for functions is

〈f |g〉 =

∫ ∞
−∞

dxf(x)∗g(x) (5.1.2)

The above is the inner product between two functions which are actually vectors.1 The left-
hand side is the compact notation for the inner product between two state vectors known
as Dirac’s bra-ket notation. The 〈f | is the “bra” while |g〉 is the “ket”. The “bra” can be
thought of as the conjugate transpose of a vector, while the “ket” is analogous to an ordinary
vector.

The set of functions, just as a set of vectors, can then span a vector space.2 A vector
space for which an inner product is defined as above is known as an inner product space.

1In the mathematics literature, the inner product is often denoted as 〈f, g〉 or (f, g).
2When any vector in the space can be represented as a linear superposition of the set of independent

vectors, the set of vectors are said to span the vector space. They also form the basis set for spanning the
space.
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Moreover, an inner product space which is complete is a Hilbert space.3 Hilbert spaces can
be infinite dimensional. The above inner product facilitates the definition of a norm since
〈f |f〉 is a positive definite number. Hence, the norm of a vector can be defined to be

‖f‖ = (〈f |f〉)1/2 (5.1.3)

It is the measure of the length of the vector. We can use this norm to define the distance
between two vectors to be

d(f, g) = ‖f − g‖ (5.1.4)

In general, if we have a set of orthonormal eigenfunctions, {ψn(x), n = 1, . . . ∞}, that
spans a linear vector space, we can expand an arbitrary function in the same space as

g(x) =
∑
n

dnψn(x) (5.1.5)

The set {ψn(x), n = 1, . . . ∞} also forms the orthonormal basis or the orthonormal basis set
for spanning the vector space. A member of the set is known as a basis function or a basis
vector.4 Eigenfunctions of an operator can be used as basis functions.

The above can be written using Dirac’s notation as

|g〉 =
∑
n

dn|ψn〉 (5.1.6)

Inner product the above with 〈ψm| from the left, we arrive at that

〈ψm|g〉 =
∑
n

dn〈ψm|ψn〉 (5.1.7)

Using the orthonormality of the eigenfunction such that 〈ψm|ψn〉 = δnm, the above yields
that

dm = 〈ψm|g〉 (5.1.8)

Consequently, we have

|g〉 =
∑
n

|ψn〉〈ψn|g〉 (5.1.9)

We can identify the operator

Î =
∑
n

|ψn〉〈ψn| (5.1.10)

3It was studied by David Hilbert (1862-1943). Later Stefan Banach (1892-1945), and Sergei Sobolev (1908-
1989) studied the generalization of Hilbert spaces, which are known respectively as Banach spaces and Sobolev
spaces.

4We will use “function” and “vector” interchangeably since they are the same.
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as an identity operator since when it operates on a vector, it returns the same vector. We
can often construct an identity operator of a vector space once we have identify the set
of orthonormal vectors that spans the space. The product |ψn〉〈φn| in Dirac’s notation, is
analogous to outer product between two vectors u ·v† in linear algebraic notation. This outer
product produces a matrix or an operator.

For instance, if we are in a 3-space (the short for 3D vector space), the unit vectors that
span the 3-space are {â1, â2, â3}. They are complete and orthonormal. Hence, the identity
operator in a 3-space is5

I =

3∑
i=1

âiâi (5.1.11)

To be strictly correct, the above is an outer product between two vectors, and a transpose sign
should be attached to one of the unit vectors. But it is customary in the physics literature to
ignore this transpose sign. Written in terms of x, y, z notation, the identity operator becomes

I = x̂x̂+ ŷŷ + ẑẑ (5.1.12)

One can easily be convinced that I · a = a, confirming the above.6

In an N dimensional vector space spanned by a set of orthonormal vectors {Un, n =
1, . . . , N}, the identity operator is formed by their outer products; namely,

I =

N∑
n=1

un · u†n (5.1.13)

One can easily show that when I operates on a member of the vector space, it returns the
same member. Namely,

I · v =

N∑
n=1

un · u†n · v =

N∑
n=1

un
(
u†n · v

)
= v (5.1.14)

The last equality follows because the second last term is just an orthonormal eigenvector
expansion of the vector v.

A vector space is also defined by a set of axioms. For u,v,w that belong to a vector

5Throughout these lecture notes, the hat (“ˆ”) symbol is used to denote an operator, but here, it denotes
a unit vector.

6It is to be noted that an outer product in matrix notation is u · v†, while in physics notation for 3 space,
it is often just written as EB. In Dirac notation, an outer product is |ψ〉〈φ|.
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space, the following axioms hold:

Associativity of addition u + (v + w) = (u + v) + w (5.1.15)

Commutativity of addition u + v = v + u (5.1.16)

Identity element of addition v + 0 = v (5.1.17)

Inverse elements of addition v + (−v) = 0 (5.1.18)

Distributivity of scalar multiplication over vectors a(u + v) = au + av (5.1.19)

Distributivity of scalar multiplication by a vector (a+ b)v = av + bv (5.1.20)

Compatibility of scalar multiplication a(bv) = (ab)v (5.1.21)

Identity element of scalar multiplication 1v = v (5.1.22)

5.2 Operators

An operator maps vectors from one space to vectors in another space. It is denoted mathe-
matically as Â : V → W where Â is the operator, while V and W are two different vector
spaces: V is the domain space, while W is the range space. In linear algebra, the operator is
a matrix operator. In Hilbert spaces, it can be a differential operator such as

g(x) =
d

dx
f(x) (5.2.1)

It can be an integral operator such as a Fourier transform operator

g(k) =

∫ ∞
−∞

dxeikxf(x) (5.2.2)

In Dirac notation,

|g〉 = Â|f〉 (5.2.3)

Linear operators are defined such that

L̂(c1|g1〉+ c2|g2〉) = c1L̂|g1〉+ c2L̂|g2〉 (5.2.4)

It is quite clear that matrix operators satisfy the above, and hence, they are linear. They
are also known as linear maps. In general, like matrix operators, linear operators are not
commutative; namely

ÂB̂ 6= B̂Â (5.2.5)

5.2.1 Matrix Representation of an Operator

An operator equation can be written as7

|g〉 = Â|f〉 (5.2.6)

7In the mathematics literature, this is often just denoted as g = Âf .
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We can convert the above into a matrix equation by inserting an identity operator on the
right-hand side to give

|g〉 =
∑
n

Â|ψn〉〈ψn|f〉 (5.2.7)

Furthermore, we can multiply the above from the left by the basis vector 〈ψm|,m = 1, . . . ,∞
to yield8

〈ψm|g〉 =
∑
n

〈ψm|Â|ψn〉〈ψn|f〉, m = 1, . . . ,∞ (5.2.8)

The above is an infinite dimensional matrix equation which can be written as

g = A · f (5.2.9)

where [
A
]
mn

= 〈ψm|Â|ψn〉 (5.2.10)

[g]m = 〈ψm|g〉 (5.2.11)

[f ]n = 〈ψn|f〉 (5.2.12)

The matrix equation can be solved approximately by truncating its size to N ×N , or without
truncation, it can be solved iteratively.

As a simple example of an iterative solution, we write A = D+T where D is the diagonal
part of A while T is its off-diagonal part. Then (5.2.9) can be rewritten as

D · f = g −T · f (5.2.13)

The above can be solved iteratively as

D · fn = g −T · fn−1, n = 0, 1, 2, . . . , (5.2.14)

until convergence is reached, or that fn does not change with n. More sophisticated iterative
methods are available in the literature.9

The matrix denoted by

Amn = 〈ψm|Â|ψn〉 (5.2.15)

is the matrix representation of the operator Â. By the same token, 〈ψm|g〉 and 〈ψn|f〉 are
the vector representations of the functions g and f respectively.

In the above, we have assumed that the range space and the domain space of the operator
are the same, and hence, they can be spanned by the same basis set. For a Hermitian operator,
this is usually the case. However, for some operators where the range space and the domain
space are different, we may choose to test (5.2.7) with a different set of basis functions.

8This process is called testing or weighting, and ψm is called the testing or weighting function.
9An example is the Krylov subspace method by Aleksey Krylov (1863-1945).
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5.2.2 Bilinear Expansion of an Operator

We have seen how the use of the identity operator allows us to expand a function in terms
of a set of basis functions as in (5.1.9). The same can be done with an operator. Pre- and
post-multiply an operator with the identity operator as given by (5.1.10), we have

Â =
∑
n

∑
m

|ψn〉〈ψn|Â|ψm〉〈ψm| (5.2.16)

The above can be rewritten as

Â =
∑
n

∑
m

|ψn〉Anm〈ψm| =
∑
n

∑
m

Anm|ψn〉〈ψm| (5.2.17)

where Anm is the matrix representation of the operator Â. The above is the bilinear expansion
of the operator in terms of orthonormal functions. Notice that the expansion of an identity
operator given by (5.1.10) is a bilinear expansion.

5.2.3 Trace of an Operator

The trace of a matrix operator is defined to be the sum of its diagonal elements; namely,

tr
(
M
)

=

N∑
i=1

Mii (5.2.18)

If an operator Â has matrix representation given by 〈ψi|Â|ψj〉, the trace of the operator Â is
defined to be

tr
(
Â
)

=
∑
i

〈ψi|Â|ψi〉 (5.2.19)

It can be shown that the trace of an operator is independent of the basis used for its repre-
sentation. To this end, we insert the identity operator

Î =
∑
m

|φm〉〈φm| (5.2.20)

into (5.2.19) to get

tr
(
Â
)

=
∑
i

∑
m

〈ψi|φm〉〈φm|Â|ψi〉 (5.2.21)

Exchanging the order of summation above, and the order of the two scalar numbers in the
summand, we have

tr
(
Â
)

=
∑
m

∑
i

〈φm|Â|ψi〉〈ψi|φm〉 (5.2.22)
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The inner summation reduces to an identity operator which can be removed, and the above
becomes

tr
(
Â
)

=
∑
m

〈φm|Â|φm〉 (5.2.23)

This is the trace of Â using another basis set that is complete and orthonormal. Hence, the
trace of an operator is invariant with respect to the choice of basis.

If we choose a basis function that is the eigenfunction of Â such that Â|ψi〉 = λi|ψi〉, then
(5.2.19) becomes

tr
(
Â
)

=
∑
i

λi〈ψi|ψi〉 =
∑
i

λi (5.2.24)

Hence, the trace of an operator is also the sum of its eigenvalues.

It can also be shown that

tr
(
ÂB̂
)

= tr(B̂Â) (5.2.25)

This is quite easy to show for matrix operators since

tr
(
A ·B

)
=
∑
i

∑
j

AijBji =
∑
j

∑
i

BjiAij (5.2.26)

Trace is usually used in quantum mechanics as an alternative way to write the expectation
value of an operator. As mentioned before, for a quantum system in a state defined by the
state function |ψ〉, the expectation value of a quantum operator in such a state is

〈ψ|Â|ψ〉 (5.2.27)

For denumerable indices, the above is analogous to

u† ·A · u =
∑
n

∑
m

u∗nAnmum =
∑
n

∑
m

Anmumu
∗
n = tr

(
A · u · u†

)
(5.2.28)

where umu
∗
n is the outer product of two vectors um and un. Converting the above to Dirac

notation, we have

〈ψ|Â|ψ〉 = tr{Â|ψ〉〈ψ|} (5.2.29)

The operator

ρ̂ = |ψ〉〈ψ| (5.2.30)

is known as the density operator. It is used in quantum mechanics to denote the state of a
quantum system as an alternative to the state vector.
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5.2.4 Unitary Operators

Unitary operators satisfy the property that

U
† ·U = I (5.2.31)

Unitary operators are operators that when acted on a vector does not change its length. In
matrix notation, a unitary transform is

U · v = v′ (5.2.32)

The length squared of the new vector v′ is defined to be

v† ·U† ·U · v = v′† · v′ (5.2.33)

Making use of (5.2.31), the above implies that

v† · v = v′† · v′ (5.2.34)

or that the length of the vector has not changed. Furthermore, it can be easily shown that
unitary transformations preserve the inner product between two vectors, namely,

v† · u = v′† · u′ (5.2.35)

For unitary matrix, it is clear that U
†

= U
−1

. The above can be rewritten using Dirac
notation. Since in quantum mechanics, 〈ψ|ψ〉 = 1, the length of the vector is 1. The time
evolution operator by integrating Schrödinger equation given below

τ̂ = e−
i
~ Ĥt (5.2.36)

where Ĥ is the Hamiltonian operator, is a unitary operator, since the state vector it acts on
cannot change its length.

Since many basis set comprises orthonormal basis vectors, a unitary matrix is needed for
the change of basis from one set to another. For example, we can define a Fourier transform
to be

f(x) =
1√
2π

∞∫
−∞

dk eikxf̃(k).

It is used to transform the momentum representation of a wavefunction to the coordinate
representation. Using the above, we can show that∫

dx f∗(x) g(x) =

∫
dk f̃∗(k) g̃(k).

The above can be proved using the fact that

1

2π

∞∫
−∞

ei(k
′−k)x dx = δ(k′ − k)

Hence, a Fourier transform operator is a unitary operator that preserves inner products
between two vectors and their lengths.
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5.2.5 Hermitian Operators

Hermitian operators appear frequently in quantum mechanics since they have real eigenvalues.
As such, the expectation value of such operators are real valued, so that it can be connected
to measurable or observable quantities in the real world.

A Hermitian matrix is one where its conjugate transpose (also called Hermitian transpose
or Hermitian conjugate) is itself. For operators, the term “adjoint” is often used. A Hermitian
operator is also called a self-adjoint operator. The notation for this is

M̂† = M̂ (5.2.37)

For matrix operator with denumerable indices, the above is the same as

M∗ij = Mji (5.2.38)

For operators with nondenumerable indices, it is better to define the adjoint of the operator
via inner products. Using the rule for conjugate transpose, we have(

a† ·M · b
)∗

= b† ·M† · a (5.2.39)

Generalizing the above to infinite dimensional space, we have

〈f |M̂ |g〉∗ = 〈f |M̂ |g〉† = 〈g|M̂†|f〉 (5.2.40)

The first equality follows because the above are scalar quantities: hence, the conjugate trans-
pose of a scalar is the same as its conjugation. To obtain the second equality, we have used
the rule that (

A ·B ·C
)t

= C
t ·Bt ·At

(5.2.41)

in linear algebra, where the matrices need not be square. Hence, A and C can be 1×N and
N × 1 respectively representing vectors. This identity immediately implies that(

A ·B ·C
)†

= C
† ·B† ·A† (5.2.42)

These rules can easily be shown to apply to inner product of operators and vectors under
the Dirac notation. Hence, (5.2.40) defines the adjoint of the operator M̂† when f and g are
arbitrary. It does so by using just inner products.

A Hermitian operator has real eigenvalues and their eigenvectors are orthogonal. The
proof is analogous to the proof for matrix operators, for which we will provide next. Given

M · vi = λivi (5.2.43)

M · vj = λjvj (5.2.44)

Dot-multiply the first equation by v†j from the left, and likewise for the second equation with

v†i , we have

v†j ·M · vi = λiv
†
j · vi (5.2.45)

v†i ·M · vj = λjv
†
i · vj (5.2.46)
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We can take the conjugate transpose of the first equation, using the rule in (5.2.42), the left-
hand side becomes the same as that for the second equation after making use of the Hermitian
property of the matrix M. On subtracting the two equations, the following equation ensues:

0 = (λ∗i − λj)v
†
i · vj (5.2.47)

If i = j, on the right-hand side, we have v†i · vi = |vi|2 which is a positive definite number.
The above can be zero only if λ∗i = λi or that λi is real. On the other hand, if λi 6= λj , it is

necessary that v†i · vj = 0. In other words,

v†i · vj = Cnδij (5.2.48)

The above proof can be repeated using Dirac notation, and the conclusion will be the same.
The eigenvectors of a Hermitian operator are also complete in the space that the operator acts
on. It is obvious in the finite dimensional case, but not so obvious in the infinite dimensional
space.

We can use the rule expressed in (5.2.40) to see if an operator is Hermitian. For instance,
the momentum operator is p̂. Using (5.2.40), we have

〈f |p̂|g〉∗ = 〈g|p̂†|f〉 (5.2.49)

The above defines the adjoint of the operator p̂ = −i~d/dx. Writing the above explicitly in
1D space using coordinate space representation,10 we have on the left-hand side∫ ∞

−∞
dxf(x)i~

d

dx
g∗(x) =

∫ ∞
−∞

dxg∗(x)

(
−i~ d

dx

)
f(x) (5.2.50)

We have arrived at the form of the right-hand side by using integration by parts, and assuming
that the functions are vanishing at infinity. By comparing the above, we identify that

p̂† = −i~ d

dx
(5.2.51)

Therefore, we note that (p̂)† = p̂ implying that it is Hermitian or self-adjoint. The eigenfunc-
tion of the momentum operator is fk(x) ∝ eikx. It is quite clear that p̂fk(x) = ~kfk(x), and
hence, its eigenvalues are also real, as is required of a Hermitian operator.

The above can be generalized to 3D. It can also be shown that the kinetic energy operator

T̂ = p̂2/2m = −~∇̂2

2m
(5.2.52)

is Hermitian. In 3D, p̂2 is proportional to the Laplacian operator ∇2 in coordinate repre-
sentation. We can use integration by parts in 3D to show that the above operator is also
Hermitian. Using the fact that

∇ · [f(r)∇g∗(r)] = f(r)∇2g∗(r) +∇f(r)∇g∗(r) (5.2.53)

10A note is in order here regarding the term “coordinate space”, since there is only one Hilbert space. It
is understood that when the term “coordinate space representation” is used, it means that the Hilbert space
is represented in the space where the basis is the coordinate space basis. It is often just called “coordinate
representation”.
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we have in coordinate representation∫
V

drf(r)∇2g∗(r) =

∫
V

dr [∇ · (f(r)∇g∗(r))−∇f(r)∇g∗(r)] = −
∫
V

dr∇f(r)∇g∗(r)

(5.2.54)

The last form is symmetric between f and g, and hence, we can easily show that∫
V

drg∗(r)∇2f(r) = −
∫
V

dr∇g∗(r)∇f(r) (5.2.55)

Consequently, we can show that

〈f |∇̂2|g〉∗ =

[∫
V

drf∗(r)∇2g(r)

]∗
=

∫
V

drg∗(r)∇2f(r)

= 〈g|∇̂2|f〉 (5.2.56)

indicating the Hermitian property of the Laplacian operator. Consequently, the T̂ operator
is also Hermitian or self-adjoint. If we have chosen f = g in the above, (5.2.55) is always
negative, implying that the Laplacian operator is a negative definite operator.

The definition of (5.2.40) can be extended to defining the transpose of an operator. For
matrix algebra, (

a† ·M · b
)t

= bt ·Mt · a∗ (5.2.57)

Generalizing the above to infinite dimensional space, we have

〈f |M̂ |g〉t = 〈g∗|M̂ t|f∗〉 (5.2.58)

which is the defining equation for the transpose of an operator.

5.3 Commutation of Operators

Operators, like matrices, are non-commuting for most parts. In other words,

ÂB̂ 6= B̂Â (5.3.1)

The commutator is defined to be [
Â, B̂

]
= ÂB̂ − B̂Â (5.3.2)

If Â and B̂ commute, then [
Â, B̂

]
= 0 (5.3.3)
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But for most parts, [
Â, B̂

]
= iĈ (5.3.4)

It can be shown easily that Ĉ is a Hermitian operator if Â and B̂ are Hermitian.
If Â and B̂ are commuting, they share the same set of eigenfunctions, but not the same

eigenvalues. Say if |ψn〉 is an eigenfunction of B̂, with eigenvalue Bn, then

B̂Â|ψn〉 = ÂB̂|ψn〉 = ÂBn|ψn〉 = BnÂ|ψn〉 (5.3.5)

From the above, it is clear that Â|ψn〉 is also eigenfunction of B̂ with the same eigenvalue
Bn. Therefore, Â|ψn〉 is proportional to |ψn〉, or that Â|ψn〉 = An|ψn〉. In other words, |ψn〉
is also an eigenfunction of Â, but with a different eigenvalue, since An 6= Bn.

Alternatively, one can argue that if |ψn〉 is an eigenfunction of both Â and B̂, the actions of
these operators on their eigenfunctions just produce a scalar number or a c-number (classical
number). In other words,

ÂB̂|ψn〉 = AnBn|ψn〉 = BnAn|ψn〉 = B̂Â|ψn〉 (5.3.6)

The above applies also to an arbitrary vector expanded in terms of the eigenfunctions shared
by both operators.

As an example, the position operator x̂ = x and the momentum operator p̂ = −i~d/dx
do not commute with each other. It can be easily shown that

[x, p̂] = i~Î = i~

Therefore, they cannot share the same set of eigenfunctions.

5.4 Expectation Value and Eigenvalue of Operators

The expectation value of a random variable is a concept from probability. In quantum me-
chanics, a measurable quantity or an observable in the real world is a random variable. For
each observable in the real world, there is a corresponding operator in the quantum world.

The expectation value of an operator for a quantum system in state |f〉 is defined to be〈
Â
〉

=
〈
f
∣∣∣Â∣∣∣ f〉 (5.4.1)

It is analogous to

f† ·A · f (5.4.2)

The above are real value quantities if Â and A are Hermitian operators. It is prudent to
understand this expectation value in terms of the eigenstates and eigenvalues of Â. Letting

|f〉 =
∑
n

|ψn〉fn (5.4.3)
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then (5.4.1) can be rewritten as〈
Â
〉

=
∑
n

∑
m

〈
ψn

∣∣∣Â∣∣∣ψm〉 f∗nfm (5.4.4)

When ψm is the eigenstate of Â with eigenvalue Am, the above can be written as〈
Â
〉

=
∑
n

∑
m

Am〈ψn|ψm〉f∗nfm =
∑
n

An|fn|2 =
∑
n

AnPn (5.4.5)

where |fn|2 = Pn is the probability of finding the state in eigenstate n.11 Hence, the above is
the statistical average or the expectation value of the eigenvalue An. The eigenvalue An can
be thought of as a random variable. Hence, the expectation value of an operator is the average
value of its eigenvalue when the quantum state is in state f . Therefore, it is customary is
denote 〈

Â
〉

=
〈
f
∣∣∣Â∣∣∣ f〉 = 〈A〉 = Ā (5.4.6)

where the scalar variable A denotes the eigenvalue of Â, which is a random variable, while the
angular brackets over A, or 〈A〉, indicate statistical average. An overbar in the last equality
above is often used as a short-hand for angular brackets to denote an average of a random
variable.

The above indicates that if we prepare a quantum state that is exactly the eigenstate of
the quantum operator Â, then its expectation value in this quantum eigenstate is just the
eigenvalue of the eigenstate. In a sense, we can “measure” or “observe” the eigenvalue of the
quantum operator through such an experiment. Namely,〈

Â
〉

=
〈
ψn

∣∣∣Â∣∣∣ψn〉 = An (5.4.7)

where An is the eigenvalue of the eigenstate.
We see in the previous section that when two operators commute, they share the same

eigenfunctions but with different eigenvalues. Therefore, if we prepare an eigenstate shared by
these two operators, their respective eigenvalues can be “measured” exactly. In other words,〈

Â
〉

=
〈
ψn

∣∣∣Â∣∣∣ψn〉 = An (5.4.8)〈
B̂
〉

=
〈
ψn

∣∣∣B̂∣∣∣ψn〉 = Bn (5.4.9)

On the other hand, if the two operators do not commute, they do not share the same set
of eigenstates. If we prepare an eigenstate ψn that is the eigenstate of Â, but it is not the
eigenstate of B̂. However, we can expand the eigenstate ψn in terms of the eigenstates of the
operator B̂; namely,

|ψn〉 =
∑
i

ai|φi〉 (5.4.10)

11Because in (5.4.3), 〈f |f〉 = 1, it implies that
∑
n |fn|2 = 1. Therefore, |fn|2 = Pn, the probability of

finding the particle in state |ψn〉.
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where |φi〉 are the eigenstates of B̂. We now see that the expectation value of B̂ due to the
eigenstate |ψn〉 is 〈

B̂
〉

=
〈
ψn

∣∣∣B̂∣∣∣ψn〉 =
∑
ij

a∗i aj〈φi|B̂|φj〉 =
∑
i

|ai|2Bi (5.4.11)

The expectation value of B̂ is due to a range of eigenvalues of B̂, and not just due to one
pure, single eigenvalue like before. This is the gist of the uncertainty principle. When two
operators do not commute, the precise measurement of the eigenvalue of one operator implies
that the measurement of the second operator will involve a range of eigenvalues.

For example, the eigenfunction of the momentum operator p̂ = −i~d/dx is proportional
to eikx with eigenvalue ~k, since p̂eikx = ~keikx. The eigenfunction of the position operator
is δ(x− x0) since xδ(x− x0) = x0δ(x− x0) where x0 is a constant. Since

eikx =

∞∫
−∞

eikx
′
δ(x− x′)dx′

It is seen that the pure eigenstate of the momentum operator has to be expanded in terms of
infinitely many eigenstates of the position operator. Conversely,

δ(x− x′) =
1

2π

∞∫
−∞

ei(x−x
′)k dk

indicates that the eigenstate of the position operator can be expanded in terms of infinitely
many eigenstates of the momentum operator.12

5.5 Generalized Uncertainty Principle

We have seen the Heisenberg uncertainty principle expressed for uncertainty in momentum
∆p and position ∆x as ∆p∆x ≥ ~/2. In this case, p and x are both observables in the real
world. In quantum mechanics, all observables are replaced by operators. To connect the
operators to real world observables, we take the expectation values of the operators. That is

Ā = 〈A〉 = 〈f |Â|f〉 (5.5.1)

where A is a scalar variable representing the eigenvalue of Â and f is a state vector that
defines that state the quantum system is in. The expectation value of an operator also
gives the statistical mean of the observable expressed as the mean of the eigenvalue of the
corresponding operator. In general,

〈f |(Â)n|f〉 = 〈(A)n〉 (5.5.2)

〈f |F (Â)|f〉 = 〈F (A)〉 (5.5.3)

12It is to be noted that the eigenstates eikx and δ(x−x′) are both not square integrable, and hence, should
be thought of as limiting cases of some square integrable functions.
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where the left-hand sides are the expectation values of the operators, while the right-hand
sides are the expectation values of their eigenvalues.

We can define the deviation from its mean by the operator

∆Â = Â− Ā (5.5.4)

On the right-hand side, the first term is an operator while the second term is the mean.13

The above operator has zero expectation value or zero mean.

We can study the variance of the operator
(

∆Â
)2

which has nonzero expectation value.

Namely, 〈
f |(∆Â)2|f

〉
=
〈
f |(Â− Ā)2|f

〉
=
〈
(A− Ā)2

〉
=
〈
A2 − 2ĀA+ Ā2

〉
=
〈
A2
〉
− 2Ā〈A〉+ Ā2

=
〈
A2
〉
− Ā2 =

〈
(∆A)2

〉
= (∆A)2 = σ2

A (5.5.5)

The above is just the definition of variance of random variable A as in statistics. The standard
deviation is obtained by taking the square root of the variance to get14

σA =

√
(∆A)2 (5.5.6)

We can derive a similar expression for σB , the standard deviation for B.
The generalized uncertainty principle is obtained by using the Schwartz inequality:∣∣∣∣∫ f∗gdx

∣∣∣∣2 ≤ (∫ |f |2dx)(∫ |g|2dx) (5.5.7)

We can rewrite the above using Dirac notation to get

|〈f |g〉|2 ≤ 〈f |f〉〈g|g〉 (5.5.8)

The above is the generalization of the cosine inequality we have for 3-vectors15

|A ·B|2 = |A|2|B|2| cos θ|2 ≤ |A|2|B|2 (5.5.9)

It can be generalized to N -vectors or vectors in N dimensional space, and then to vectors
in infinite dimensional space if the integrals converge. If we define, for a quantum system in
state ψ,

|f〉 =
(
Â− Ā

)
|ψ〉 = â|ψ〉 (5.5.10)

|g〉 =
(
B̂ − B̄

)
|ψ〉 = b̂|ψ〉 (5.5.11)

13To be strictly correct, we should multiply the second term by the identity operator, but this is usually
understood.

14It is tempting to denote the standard deviation as ∆A but this could be confusing in view of (5.5.4).
15The integral for the inner products above can be generalized to 3D space.
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where â = Â− Ā and b̂ = B̂ − B̄. Then

〈f |f〉 =
〈
ψ
∣∣â2
∣∣ψ〉 =

〈
ψ

∣∣∣∣(Â− Ā)2
∣∣∣∣ψ〉 = (∆A)2 (5.5.12)

〈g|g〉 =
〈
ψ
∣∣∣b̂2∣∣∣ψ〉 =

〈
ψ

∣∣∣∣(B̂ − B̄)2
∣∣∣∣ψ〉 = (∆B)2 (5.5.13)

Using the inequality in (5.5.8), we have(
(∆A)2

)(
(∆B)2

)
≥ |〈ψ|âb̂|ψ〉|2 (5.5.14)

It can be shown easily that if [Â, B̂] = iĈ

[â, b̂] = iĈ (5.5.15)

where Ĉ is Hermitian. Furthermore,

âb̂ =
âb̂+ b̂â

2
+
âb̂− b̂â

2
=
âb̂+ b̂â

2
+ i

Ĉ

2
(5.5.16)

Taking the expectation value of the above, we have

〈âb̂〉 =

〈
âb̂+ b̂â

2

〉
+
i

2
〈Ĉ〉 (5.5.17)

Since â and b̂ are Hermitian, the operator in first term on the right-hand side is also Hermi-
tian. Hence, its expectation value is purely real, while the second term is purely imaginary.
Therefore, the amplitude squared of the above is

|〈âb̂〉|2 =

∣∣∣∣∣
〈
âb̂+ b̂â

2

〉∣∣∣∣∣
2

+
1

4
|〈Ĉ〉|2 ≥ 1

4
|〈Ĉ〉|2 (5.5.18)

Using the above in (5.5.14), we have(
(∆A)2

)(
(∆B)2

)
≥ 1

4
|〈Ĉ〉|2 (5.5.19)

The above is the generalized uncertainty principle for two observables A and B. We can take
the square root of the above to get

σAσB ≥
1

2
|〈Ĉ〉| (5.5.20)

Appendix

A Identity Operator in a Continuum Space

We have seen the derivation of the identity operator when the basis functions are indexed
by integers, such as the eigenfunctions of an infinite potential well, or those of a harmonic
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oscillator in a parabolic potential well. In many situations, we are required to work with
indices that are a continuum (nondenumerable) like the coordinate space indices x, y, z. When
an electron is freely roaming, its energy values are also a continuum.

We have seen how we have used denumerable eigenfunctions, such as ψn to project a
function into its vector representation. Namely,

fn = 〈ψn|f〉 (A1)

Very often, a denumerable basis function is just written as 〈n|, and the above becomes

fn = 〈n|f〉 (A2)

Similar, we can think of a coordinate (or position) basis function 〈px| whose property is that
its inner product with |f〉 yields the value of the function f at position x; namely,

f(x) = 〈px|f〉 (A3)

The above is often abbreviated as

f(x) = 〈x|f〉 (A4)

Assuming that this basis |x〉 is complete and orthogonal in 0 < x < a, then we can define
an identity operator such that

I =

∫ a

0

dx′|x′〉〈x′| (A5)

so that

|f〉 =

∫ a

0

dx′|x′〉〈x′|f〉 =

∫ a

0

dx′|x′〉f(x′) (A6)

Notice that the above is quite different from the identity operator when the basis functions
are denumerable, which is

I =

∞∑
n=1

|fn〉〈fn| (A7)

Taking the product of (A6) with 〈x|, we have

〈x|f〉 = f(x) =

∫ a

0

dx′〈x|x′〉f(x′) (A8)

Hence, in order for (A5) to be an identity operator, the basis function must satisfy

〈x|x′〉 = δ(x− x′) (A9)

Notice that in the denumerable case, the orthonormal relation of the basis function is ex-
pressed in terms of Kronecker delta function δij , but in the continuum case, the equivalent
relationship is expressed in terms of the Dirac delta function δ(x− x′).
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We note that |x〉 is not orthonormal in the strict sense that (A9) is infinite when x = x′.
The identity operator (A5) is different from (A7) because of the extra weight dx in the
integral summation. One may think that |x〉

√
dx′ as analogous to the orthonormal vector of

the countable case. So (A5) can be thought of as the limiting case of a countable summation

I =

N∑
i=1

√
∆x|xi〉〈xi|

√
∆x (A10)

as ∆x→ 0, so the orthonormal basis is actually
√

∆x|xi〉. Similar, (A9) as the limiting case
of

〈xi|xj〉 = δij/∆x (A11)

The inner product between two vectors is written as

〈f |g〉 =

a∫
0

dx〈f |x〉〈x|g〉 =

a∫
0

dxf∗(x)g(x) (A12)

where we have inserted the identity operator (A5) in the first expression above to get the
second expression, and making use of (A4) to get the third expression. Furthermore, we note
that 〈f |x〉 is the complex conjugate of 〈x|f〉, since 〈f | and |x〉 are conjugate transpose of |f〉
and 〈x|, respectively.

A vector |f〉 can have other representations. For example, we can define a set of “or-
thonormal” vectors 〈k| such that

〈k|f〉 = f(k), (A13)

where f(k) is the Fourier transform of f(x) via the relationship

f(x) =
1√
2π

∞∫
−∞

dkeikxf(k) (A14)

The above can be written as

f(x) = 〈x|f〉 =

∞∫
−∞

dk〈x|k〉〈k|f〉 (A15)

where we have defined the identity operator

I =

∞∫
−∞

dk|k〉〈k| (A16)

Comparing (A13), (A14) and (A15), we deduce that

〈x|k〉 =
1√
2π
eikx (A17)
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In other words, the coordinate representation of the vector |k〉 is given by (A17). Since
~k in quantum mechanics is related to the momentum of a particle, f(k) = 〈k|f〉 is also
called the momentum representation of the vector |f〉, while f(x) = 〈x|f〉 is the coordinate
representation of the vector |f〉.

From the above, we can derive Parseval’s theorem

〈f |g〉 =
a∫
0

dx〈f |x〉〈x|g〉 =
a∫
0

dxf∗(x)g(x)

=
∞∫
−∞

dk〈f |k〉〈k|g〉 =
∞∫
−∞

dkf∗(k)g(k)
(A18)

Parseval’s theorem is the statement that the inner product between two vectors is invariant
with respect to the basis that represent it.

The above can be generalized to 3-space where a position basis function is 〈r|, with the
property that

f(r) = 〈r|f〉 (A19)

The identity operator can then be expressed as

I =

∫
V

dr′|r′〉〈r′| (A20)

And the “orthonormality” relationship is

〈r|r′〉 = δ(r− r′) (A21)

Similar basis can be defined for the 3D k space.

B Changing Between Representations

If we have an operator equation such as

p̂|ψ〉 = |g〉 (B1)

The above equation is analogous to the equation P · f = g in matrix algebra. The explicit
forms and the representations of the matrix operator P and the vector f are not given. In
order to express the above explicitly, we first insert the identity operator to transform (B1)
to ∫

dx p̂|x〉〈x|ψ〉 = |g〉 (B2)

Then multiply the above from the left by 〈x′|, we have∫
dx〈x′|p̂|x〉〈x|ψ〉 = 〈x′|g〉 (B3)∫
dxp(x′, x)ψ(x) = g(x′) (B4)

The above is the coordinate representation of (B1). It is valid for any operator in a 1D space.
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B1 Momentum Operator

But if p̂ is the momentum operator, we know that the above equation in coordinate space
representation should be

−i~ d

dx
ψ(x) = g(x′) (B5)

Hence we conclude that the coordinate representation of p̂, which is 〈x′|p̂|x〉 is

p(x′, x) = −i~δ(x′ − x)
d

dx
(B6)

Therefore, a differential operator is a highly localized operator, or a quasi-diagonal operator.
Next, we will study the action of the momentum operator p̂ on a momentum eigenstate

|k〉; namely,

p̂|k〉 (B7)

Transforming the above to coordinate representation similar to what have been done above,
we have

〈x′|p̂|k〉 =

∫
dx〈x′|p̂|x〉〈x|k〉 =

∫
dxδ(x′ − x)

(
−i~ d

dx

)
〈x|k〉 =

(
−i~ d

dx′

)
〈x′|k〉 (B8)

The expression for 〈x|k〉 is given in equation (A17). Hence, the above becomes

〈x′|p̂|k〉 = ~k〈x′|k〉 (B9)

Therefore, we see that |k〉 is an eigenvector of the momentum operator p̂. In other words,

p̂|k〉 = ~k|k〉 (B10)

In fact, any function of p̂, when operating on a momentum eigenstate gives

f(p̂)|k〉 = f(~k)|k〉 (B11)

We can repeat (B2) and (B3) using the basis |k〉 to arrive at∫
dk〈k′|p̂|k〉〈k|ψ〉 = 〈k′|g〉 (B12)

Since |k〉 is an eigenvector of p̂, the above becomes∫
dk~k〈k′|k〉〈k|ψ〉 =

∫
dk~kδ(k′ − k)〈k|ψ〉 = ~k′〈k′|ψ〉 = 〈k′|g〉 (B13)

which is just a scalar equation. In other words, the momentum representation of (B1) is

〈k′|p̂|ψ〉 = ~k′〈k′|ψ〉 = ~k′ψ(k′) = g(k′) (B14)



More Mathematical Preliminaries 71

B2 Position Operator

Similarly, we can show that the position operator x̂, when operating on a vector, can be
expressed as

x̂|ψ〉 =

∫
dkx̂|k〉〈k|ψ〉 =

∫
dk

∫
dxx̂|x〉〈x|k〉〈k|ψ〉 =

∫
dk

∫
dxx|x〉〈x|k〉〈k|ψ〉 (B15)

where we have used x̂|x〉 = x|x〉 to arrive at the last equality. Furthermore, we notice that
x|x〉〈x|k〉 = − i

k
d
dk (|x〉〈x|k〉) after making use of (A17). Consequently,

x̂|ψ〉 =

∫
dk

(
− i
k

d

dk

∫
dx|x〉〈x|k〉

)
〈k|ψ〉 =

∫
dk

(
− i
k

d

dk
|k〉
)
〈k|ψ〉 (B16)

Taking the inner product of the above with 〈k′|, we have

〈k′|x̂|ψ〉 =

∫
dk

(
− i
k

d

dk
〈k′|k〉

)
〈k|ψ〉 =

∫
dk

(
− i
k

d

dk
δ(k′ − k)

)
ψ(k)

=

∫
dkδ(k′ − k)

(
i

k

d

dk
ψ(k)

)
(B17)

The last equality follows from integration by parts. Therefore, the momentum representation
of x̂|ψ〉, which is just 〈k′|x̂|ψ〉, is

〈k′|x̂|ψ〉 =
i

k

d

dk′
ψ(k′) (B18)

B3 The Coordinate Basis Function

Using the coordinate basis function |r〉, we can write many of our previously derived identities
in coordinate representation. Say if the functions defined in (5.1.9) and (5.1.10) are functions
of 3-space, indexed by r, then multiplying (5.1.9) from the left by 〈r|,

〈r|g〉 = g(r) =
∑
n

〈r|ψn〉〈ψn|g〉 =
∑
n

ψn(r)〈ψn|g〉 (B19)

We can pre- and post-multiply the identity operator defined in (5.1.10) by 〈r| and |r′〉 respec-
tively, we can identify the operator〈

r
∣∣∣Î∣∣∣ r′〉 = 〈r|r′〉 = δ(r− r′) =

∑
n

〈r|ψn〉〈ψn|r′〉 =
∑
n

ψn(r)ψ∗n(r′) (B20)

where we have noted that 〈ψn|r′〉 = 〈r′|ψn〉∗ since they are conjugate transpose of each other.
The above is the bilinear eigenfunction expansion of the Dirac delta function. We can also
apply the above to the bilinear expansion of an operator given by (5.2.17). Going through
similar operations, we have〈

r
∣∣∣Â∣∣∣ r′〉 = A(r, r′) =

∑
n

∑
m

Anmψn(r)ψ∗m(r′) (B21)



72 Quantum Mechanics Made Simple

We have let A(r, r′) be the coordinate representation of the operator Â. The above is just
the bilinear expansion in coordinate representation.

We can also choose the momentum basis set |k〉 (or any other basis sets) and project the
previously obtained identities in momentum representation (or any other representations).

C Time Evolution of the Expectation Value of an Oper-
ator

The expectation value of an operator is given by

〈Â〉 = 〈ψ(t)|Â|ψ(t)〉 (C1)

Taking the time derivative of the above yields

∂t〈Â〉 = 〈∂tψ(t)|Â|ψ(t)〉+ 〈ψ(t)|Â|∂tψ(t)〉 (C2)

Assuming that Â is time independent, and using the fact that

i~∂t|ψ(t)〉 = i~|∂tψ(t)〉 = Ĥ|ψ(t)〉 (C3)

we have

∂t〈Â〉 =
i

~

〈[
Ĥψ(t)

]
|Â|ψ(t)

〉
− i

~
〈ψ(t)|Â|Ĥψ(t)〉

=
i

~
〈ψ(t)|ĤÂ|ψ(t)〉 − i

~
〈ψ(t)|ÂĤ|ψ(t)〉

=
i

~
〈ψ(t)|ĤÂ− ÂĤ|ψ(t)〉 (C4)

or

i~∂t〈Â〉 = 〈ÂĤ − ĤÂ〉 =
〈[
Â, Ĥ

]〉
(C5)

In other words, if Â commutes with Ĥ, its expectation value is time independent, or it is
a constant of motion. The operator Â in this case represents an observable that is con-
served, such as linear momentum or angular momentum. If such an operator commutes with
the Hamiltonian of the quantum system, the observable that corresponds to the operator is
conserved.

Furthermore, it can be shown that if Â is time dependent, we need only to augment the
above equation as

i~∂t〈Â〉 =
〈[
Â, Ĥ

]〉
+ i~〈∂tÂ〉 (C6)



More Mathematical Preliminaries 73

C1 Comparison to classical equations of motion

As a simple but illustrative example of the use of equation (C5) we consider the time evolution
of the expectation values of the position and momentum operators, with a 1-D Hamiltonian

of the form Ĥ = T̂ + V̂ = p̂2

2m + V (x̂). Although we do not use the conventional “hat” label
for the potential energy operator in the latter form, it is understood as an operator function
of the position operator x̂. First we consider the time evolution of the expectation of x̂.

An operator will commute with any function of itself, therefore the commutator of x̂ with
Ĥ reduces to [x̂, T̂ ].

[x̂, T̂ ] =
1

2m
[x̂, p̂2] =

1

2m
[x̂ p̂2 − p̂2 x̂] (C7)

To evaluate the last commutator between x̂ and p̂2 one can imagine an arbitrary state that the
commutator acts on and work out everything using chain rule in the position basis. However,
this method is cumbersome and unnecessary since the commutator between x̂ and p̂ is known.
The straightforward way to compute is to take the operator x̂ across p̂2 using [x̂, p̂] = i~

x̂p̂ = i~ + p̂x̂ (C8)

x̂p̂p̂ = [p̂x̂+ i~]p̂

= i~p̂+ p̂[p̂x̂+ i~]

= 2i~p̂+ p̂p̂x̂

x̂p̂2 − p̂2x̂ = 2i~p̂ (C9)

We therefore conclude that the time evolution of the expectation value of x̂ is governed by:

∂t〈x̂〉 =
1

m
〈p̂〉 (C10)

In the sense of expectation values this equation agrees with its classical counterpart, which is
Newton’s first law. A more interesting case is the time evolution of the expectation value of
the momentum. We would expect to get a quantum mechanical analog of Newton’s second
law. But the calculation shows otherwise.

Now the commutator of interest is that between the momentum operator p̂ and the po-
tential energy operator V (x̂). Since no explicit expression is given for the functional form
of V (x̂) it is not immediately clear how this can be evaluated. However, recall our result in
equation (C9). Let us recast the formula into a different form. An interesting observation is
that

[x̂, p̂2] = 2i~p̂ = [x̂, p̂] ∂p̂p̂
2 (C11)

In the right most part of the above equation we take the derivative of an operator function.
This may be understood by imagining the whole structure operating on an eigenfunction of p̂
and thus reduces to taking the derivative of an ordinary function. This suggest us to consider
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the following commutator

[p̂, x̂n] = p̂x̂n − x̂np̂
= [x̂p̂− i~]x̂n−1 − x̂np̂
= . . .

= −ni~x̂n−1 + x̂np̂− x̂np̂
[p̂, x̂n] = [p̂, x̂] ∂x̂x̂

n (C12)

Equation (C12) is true for any polynomial function of x̂. Given a nice and smooth potential
function V (x̂) we can use Taylor expansion to turn it into a polynomial function. Then the
commutator between p̂ and V (x̂) can be computed as

[p̂, V (x̂)] = −i~ ∂x̂V (x̂) (C13)

The time evolution of the expectation value of the momentum operator is thus governed by

∂t〈p̂〉 = −〈∂x̂V (x̂)〉 (C14)

We can now take the obvious choice of defining the “force operator” in analogy with the
classical force F (x) = −∂xV (x). The “force operator” is again understood to be an operator
function of x̂. Thus we can write the quantum mechanical equation of motion

∂t〈p̂〉 = 〈F (x̂)〉 (C15)

At first sight one might say this is just Newton’s second law. However, due to the expectation
value being taken on the operator function F (x̂) the time evolution in quantum mechanics
is in general different from that for a classical particle following the classical path defined by
〈x̂〉, i.e. 〈F (x̂)〉 6= F (〈x̂〉).

It is curious to consider when quantum mechanics agrees with classical mechanics in the
expectation value sense. For this purpose we can expand the “force operator” around the
expectation value of x̂. We denote this expectation value by x̄

F (x̂) = F (x̄) + ∂x̂F (x̂)

∣∣∣∣
x̄

(x̂− x̄) +
1

2!
∂2
x̂F (x̂)

∣∣∣∣
x̄

(x̂− x̄)2 +H.O.T (C16)

When the expectation value is taken, it is clear that the 0-th order and 1-st order terms do
not cause any difference between 〈F (x̂)〉 and F (x̄). The higher order terms are responsible
for the deviation. If the derivatives are vanishing above the 1-st order then the quantum
mechanical equations of motion for the expectation values of position and momentum are
in complete agreement with their classical counterparts. This corresponds to the case of no
force, a constant force or a linear force.

In terms of potential problems, which is the more natural language for quantum mechanics,
these are the free particle, the constant slope and the quadratic potential. This last potential
will be studied in great detail in later chapters. We will make extensive connections with
classical physics using the quadratic potential, the celebrated potential of the harmonic os-
cillator. These connections between quantum mechanics and classical mechanics are possible
due to the linear nature of the force.
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D Periodic Boundary Condition

One technique often used to create countably infinite modes is to use periodic boundary
condition. In this method, we require that the wavefunction satisfies the boundary condition
that ψ(x = 0) = ψ(x = L). This can be satisfied easily by a traveling wave

ψ(x) = Ceikx (D1)

The periodic boundary condition implies that

eikL = 1 (D2)

or that

k = kn =
2nπ

L
(D3)

where we have indexed k with subscript n, and n is all integer values on the real line from
−∞ to ∞. Furthermore, we can pick C = 1/

√
L to normalize the above function. It is quite

easy to show that with

ψn(x) =

√
1

L
ei2nπx/L (D4)

then

〈ψn|ψm〉 = δnm (D5)

Hence, given any function f(x) defined between 0 < x < L, we can expand

f(x) =

∞∑
n=−∞

fnψn(x) =

∞∑
n=−∞

fn

√
1

L
ei2nπx/L (D6)

The above is just a Fourier series expansion of the function f(x). The Fourier coefficient fn
can be found by using the orthonormality of ψn, to get

fn = 〈ψn|f〉 =

√
1

L

∫ L

0

dxe−i2nπx/Lf(x) (D7)

In the above, since ψn(x) is a periodic function with period L, f(x) is also a periodic function
with period L.

Fourier transform can be derived from Fourier series expansion. To this end, we look
at (D3), and note that the kn values are equally spaced by 2π/L on the real k line. The
spacing becomes increasingly small as L→∞. We can define the spacing to be ∆k = 2π/L.
Consequently, in view of changing a summation to an integral, we can rewrite (D6) more
suggestively as

f(x) =

∞∑
n=−∞

∆kfn
L

2π

√
1

L
ei2nπx/L =

1

2π

∞∑
n=−∞

∆kf̃(kn)eiknx (D8)
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where we have defined f̃(kn) = fn
√
L. From (D7), we have

f̃(kn) =
√
Lfn =

∫ L

0

dxe−iknxf(x) (D9)

In the limit when L tends to infinity, ∆k → 0, the sum in (D8) becomes an integral; namely

f(x) =
1

2π

∫ ∞
−∞

dkf̃(k)eikx (D10)

The above is just a Fourier inverse transform integral with f̃(k) from (D9)

f̃(k) =

∫ ∞
0

dxe−ikxf(x) (D11)

which is a Fourier transform. Here, f(x) is originally a periodic function, but now the period
L is infinite. Also, if f(x)→ 0 when x→∞, then by its infinite periodicity, f(x)→ 0 when
x→ −∞. We can replace the semi-infinite integral above with an infinite integral:

f̃(k) =

∫ ∞
−∞

dxe−ikxf(x) (D12)

The above, (D10) and (D12), form a Fourier transform pair.



Chapter 6

Approximate Methods in
Quantum Mechanics

6.1 Introduction

There are many problems in quantum mechanics where closed form or simple solutions cannot
be found. What we have shown as examples are usually problems that have simple solutions,
such a infinite potential well, harmonic oscillator, or a finite potential well. Even the case of
finite potential well requires the solution of a transcendental equation. Nevertheless, these
are called textbook problems, because they are wonderful examples in textbooks to teach
beginning students on the subject matter. But in general, most quantum mechanics problems
do not have closed form solution. We have to resort to approximate or numerical methods to
solve such problems.

6.2 Use of an Approximate Subspace

We have seen that in general, a Schrödinger equation problem can be cast into a matrix equa-
tion by projecting it into a space spanned by countably infinite orthonormal basis functions.
With such a basis, we define an identity operator

Î =

∞∑
n=1

|ψn〉〈ψn| (6.2.1)

Given a general time independent Schrödinger equation, which is

Ĥ|ψ〉 = E|ψ〉 (6.2.2)

we can first insert an identity operator between Ĥ and |ψ〉. Then the above becomes

∞∑
n=1

Ĥ|ψn〉〈ψn|ψ〉 = E|ψ〉 (6.2.3)

77
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Testing the above by multiplying it from the left with 〈ψm|, m = 1, . . . ,∞, we have1

∞∑
n=1

〈ψm|Ĥ|ψn〉〈ψn|ψ〉 = E〈ψm|ψ〉, m = 1, . . . ,∞ (6.2.4)

The above is a matrix equation of the form

∞∑
n=1

Hmnfn = Efm, m = 1, . . . ,∞ (6.2.5)

It corresponds to an infinite dimension matrix, but it can be truncated to form a finite matrix
system

H · f = Ef (6.2.6)

The above is a matrix eigenvalue problem that can be solved numerically. If H is N×N , it will
have N eigenvalues and N eigenvectors. If we choose our basis functions appropriately, and
are only interested in certain eigenvalues, which represent the energy levels of the stationary
states, we need only to pick a small set of basis functions that approximate these stationary
states well. Therefore, N can be a small number. This is important because the number of
computer operations needed to find the eigenvectors and eigenvalues of the above problem is
proportional to N3.

In solving the above, we will have to form the matrix elements Hmn. For an infinite
potential well, whose well bottom has been distorted, we can use the eigenfunctions of the
flat-bottom well as our basis functions. Then, the matrix elements Hmn are explicitly given
as

Hmn =

∫ L

0

dxψ∗m(x)

(
− ~2

2mo

d2

dx2
+ V (x)

)
ψn(x) (6.2.7)

We can use integration by parts to convert the term that involves second derivative to a form
that involves only first derivatives. That is we let

ψ∗m(x)
d2

dx2
ψn(x) =

d

dx

[
ψ∗m(x)

d

dx
ψn(x)

]
− d

dx
ψ∗m(x)

d

dx
ψn(x)

in the above to arrive at

Hmn = − ~2

2mo
ψ∗m(x)

d

dx
ψn(x)

∣∣∣∣L
0

+

∫ L

0

dx

(
~2

2mo

d

dx
ψ∗m(x)

d

dx
ψn(x) + ψ∗m(x)V (x)ψn(x)

)
(6.2.8)

The first term on the right-hand side can be made to vanish by the virtue of the boundary
condition, leaving the second term, which is a more symmetric form.

1This procedure is called testing or weighting in the mathematics literature, 〈ψm| is called the testing or
weighting function.
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Modern numerical methods have allowed us to use flexible basis set to expand our unknown
functions. For example, we can let

|ψ〉 =

N∑
n=1

an|fn〉 (6.2.9)

where fn(x) need not be orthogonal or complete in Hilbert space, but they can approximate
the unknown function ψ(x) well. Also, fn(x), n = 1, . . . , N spans an N dimensional vector
space that is the subspace of the Hilbert space. We assume that the solution in the subspace
is a good approximation of the solution in the original infinite dimensional Hilbert space.
Examples of such finite basis set are triangle functions shown in Figure 6.1.

Using (6.2.9) in (6.2.2), one gets

N∑
n=1

Ĥ|fn〉an = E

N∑
n=1

an|fn〉 (6.2.10)

Multiplying the above from 〈fm| from the left, we have

N∑
n=1

〈fm|Ĥ|fn〉an = E

N∑
n=1

〈fm|fn〉an (6.2.11)

The above is a matrix system of the form

H̃ · a = EB · a (6.2.12)

In the above, [
H̃
]
mn

= 〈fm|Ĥ|fn〉[
B
]
mn

= 〈fm|fn〉

[a]n = an (6.2.13)

The equation (6.2.12) above is a generalized eigenvalue problem with eigenvalue E and eigen-
vector a. The difference of it from (6.2.6) is that a matrix B is on the right-hand side.2 But
numerical software to seek the eigenvalues and eigenvectors for such generalized eigenvalue
problems are widely available, e.g., in MATLAB.

The approximate subspace method is varyingly known as the subspace projection method,
Galerkin’s method (named after Boris Galerkin, 1871-1945), Petrov-Galerkin method, weighted-
residual method, and the method of moments. The finite element method falls under the same
category.

6.3 Tight Binding Model

The tight binding model is a way to find the solution to two weakly coupled quantum systems
when the solution to each isolated quantum system is known (see Figure 6.1).

2The matrix B is also known as the Gram matrix.
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Figure 6.1: The triangle functions for a piecewise linear approximation of a function. This is
a basis that is not orthogonal but yet can be used to seek approximate solutions to (6.2.12).

To solve this system, we can use the subspace projection method of nonorthogonal basis
to derive the relevant matrix equation. Given the Schrödinger equation

Ĥ |ψ〉 = E |ψ〉 (6.3.1)

we let

|ψ〉 =

2∑
i=1

ai |ψi〉 (6.3.2)

where |ψ1〉 is the eigenfunction of the ground state of well 1 in isolation and |ψ2〉 is the
eigenfunction of the ground state of well 2. Going through the same procedure we have had
before, we arrive at

2∑
i=1

ai 〈ψj | Ĥ |ψi〉 = E

2∑
i=1

ai 〈ψj | ψi〉 (6.3.3)

The above is the same as the matrix equation

H · a = EB · a (6.3.4)

where [
H
]
ij

= 〈ψi| Ĥ |ψj〉 (6.3.5)[
B
]
ij

= 〈ψi| ψj〉 (6.3.6)

It is easy to show that H and B are Hermitian matrices.3 In the above, we can assume that
|ψi〉 is quasi-orthonormal, so that

〈ψi| ψj〉 ' δij (6.3.7)

3It can be easily shown that the matrix representation of a Hermitian operator remains Hermitian.
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Figure 6.1: The tight binding model can be used to find the approximate eigenstates of two
quantum wells that are weakly coupled to each other. The eigenstates of the isolated quantum
wells are known (Figure is from DAB Miller).

In other words, the B matrix is unity on the diagonal, and small on the off diagonal terms.
Then we can write the system (6.3.4) as[

E1 ∆E
∆E∗ E1

] [
a1

a2

]
= E

[
1 ∆B

∆B∗ 1

] [
a1

a2

]
(6.3.8)

The off diagonal elements are conjugate of each other because the matrix is Hermitian. More-
over, ∆E � E1 and ∆B � 1. These terms are small because the overlap between the eigen-
functions ψ1 and ψ2 is small. The further apart the wells are, the smaller these terms would
be, as the overlap is smaller. When the wells are infinitely far apart, the off diagonal terms
vanish and the two quantum systems are uncoupled from each other. The two eigenvalues
are then degenerate. To begin, we can assume weak coupling between the modes in the wells.

The eigenvalue of (6.3.8) above is obtained by solving

det

[
E1 − E ∆E − E∆B

∆E∗ − E∆B∗ E1 − E

]
= 0 (6.3.9)

or

(E1 − E)
2 − |∆E − E∆B|2 = 0 (6.3.10)
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Upon solving the above, we have

E = E1 ± |∆E1 − E∆B| ∼= E1 ± |∆E1 − E1∆B| (6.3.11)

Since the E∆B on the right-hand side of the first equality above is small, we do not incur
much error by replacing it with E1∆B. Another way of saying it is that E ≈ E1 is correct to
leading order (or zeroth order), and E∆B ≈ E1∆B is correct to second order.

Also, it can be shown that stationary states can be made completely real valued (or equal
phase). Hence, ∆E and ∆B can be made to be real valued. Therefore, without the lost of
generality, the above can be replaced with

E ∼= E1 ± (∆E1 − E1∆B) (6.3.12)

Note that the degenerate eigenvalues are now split into two non-degenerate eigenvalues.
The equation to be satisfied by the eigenvectors is[

±(∆E − E1∆B) ∆E − E1∆B
∆E − E1∆B ±(∆E − E1∆B)

]
·
[
a1

a2

]
= 0 (6.3.13)

The above equation is correct to first order, as the errors are second order. On solving, and
normalizing,4 we obtain that [

a1

a2

]
=

1√
2

[
1
1

]
(6.3.14)

or [
a1

a2

]
=

1√
2

[
1
−1

]
(6.3.15)

The corresponding eigenvectors can be found, and the eigenfunctions are of the form

ψ+(x) =
1√
2

(ψ1(x) + ψ2(x)) , ψ−(x) =
1√
2

(ψ1(x)− ψ2(x)) (6.3.16)

The eigenfunctions are due to even and odd coupling between the isolated quantum states of
the two wells as they are brought closer together.

6.3.1 Variational Method

Given an eigenvalue problem denoted by

Ĥ |φ〉 = E |φ〉 (6.3.17)

we can convert the above into a matrix generalized eigenvalue problem

H · a = E B · a (6.3.18)

4The normalization of the eigenfunction in (6.3.2) implies that |a1|2 + |a2|2 = 1.
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We next convert the above into a functional by multiplying it with ā† to obtain

a† ·H · a = E a† ·B · a (6.3.19)

By setting a = a0 + δa, E = E0 + δE, where a0 and E0 are the exact solution to (6.3.18),
and then taking the first variation of (6.3.19) we have

δa† ·H · a0 + a†0 ·H · δa = δE a†0 ·B · a0 + E0 · δa† ·B · a0

+E0a
†
0 ·B · δa

(6.3.20)

If a0 and E0 are exact solution to (6.3.20), they satisfy

H · a0 = E0 B · a0 (6.3.21)

a†0 ·H = E0a
†
0 ·B0 (6.3.22)

Then the term multiplied by δa† and δa cancel each other on both sides and we have, to first
order,

0 = δE a†0 ·B · a0 (6.3.23)

The above implies that δE is zero. It means that if we were to use (6.3.19) to find E by
writing it as

E =
a† ·H · a
a† ·B · a

(6.3.24)

and if we substitute inexact or approximate value for a = a0 + δa, the value we obtain for
E is second order accurate since δE = 0. The above is known as the Rayleigh quotient.5

To begin with, we need an estimate of the solution that is quite close to the exact solution
so that δa is small. In other words, it allows one to substitute in approximate value of a
that is just first-order accurate, and yet get an estimate of the eigenvalue or energy E that is
second-order accurate.

A more general form of the Rayleigh quotient is to test (6.3.17) with 〈φ| and convert it
into a functional. The corresponding Rayleigh quotient is

E =
〈φ|Ĥ|φ〉
〈φ|φ〉

(6.3.25)

It assumes that |φ〉 is not normalized. In the above, it can be proved by the same token that
an approximate, first-order accurate value of |φ〉 can yield a second-order accurate estimate
of E. Rayleigh quotient is great for estimating the eigenvalues when only approximate eigen-
functions are known. These eigenfunctions are also called trial functions. A systematic way
to estimate these eigenfunctions is known as the Rayleigh-Ritz method.

5This method is also known as Rayleigh-Ritz method, due to Lord Rayleigh (John W. Strutt, 1842-1919)
and Walther Ritz (1878-1909).
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6.4 Time Dependent Perturbation Theory

In time dependent perturbation theory, the Hamiltonian is perturbed with a perturbing
Hamiltonian that is a function of time. This is contradictory to the requirement that Hamil-
tonian is a independent of time, since it represents total energy. However, we can think of
the Hamiltonian of a closed quantum system that is energy conserving as consisting of three
parts;

Ĥ = ĤA + ĤI + ĤB (6.4.1)

The above consists of quantum systems described by ĤA and ĤB , and ĤI accounts for the
interaction between the two systems. Then each of the constituent Hamiltonian above can
be time varying even though the total Hamiltonian is not. Assuming the interaction is weak,
then we can focus on system A, and see what the effect of the interaction Hamiltonian HI is
on system A. To achieve energy conservation, one needs for ascertain the back-action of A
on B, but this is assumed to be small.

Time varying Hamiltonian due to a small perturbation from the interaction Hamiltonian
will be the spirit of the time dependent perturbation theory. The time dependent perturbation
theory is important for studying field-atom interaction. When light impinges on an atom, it
can cause the electron in a stationary state in the atom to be excited to a higher level by
absorbing a photon, or that the electron drops to a lower level by emitting a photon (radiative
transition).

To this end, we assume that the perturbing Hamiltonian is a function of time. In other
words, we have a Schrödinger equation where

i~
∂

∂t
|Ψ〉 = Ĥ |Ψ〉 (6.4.2)

and

Ĥ = Ĥ0 + γĤp (t) (6.4.3)

where Ĥp (t) is time varying.6 It can come from an external electric field that is time-harmonic,
for instance. We also assume that we can solve the unperturbed system in terms of stationary
states, namely

Ĥ0 |Ψn〉 = En |Ψn〉 (6.4.4)

The total time dependent wavefunction can be expanded in terms of the stationary states,
namely

|Ψ〉 =
∑
n

an (t) e−iωnt |Ψn〉 (6.4.5)

where ~ωn = En, and an (t) is a function of time.

6To be precise, the Hamiltonian of a system has to be a constant of motion, since it represents the
conservation of energy. But when a quantum system is coupled to another quantum system to which energy
is transferred, the first Hamiltonian may not be a constant anymore. But we can assume that the perturbing
Hamiltonian is small.
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Substituting the above into (6.4.2), we have

∂

∂t
|Ψ〉 =

∑
n

(ȧn (t)− iωn) e−iωnt |Ψn〉 =
1

i~
Ĥ
∑
n

an (t) e−iωnt |Ψn〉 (6.4.6)

=
1

i~
∑
n

an (t) e−iωnt
(
En |Ψn〉+ γĤp(t) |Ψn〉

)
(6.4.7)

where ȧn (t) = dan (t) /dt.
Since En = ~ωn, the En term on the right-hand side cancels the ωn term on the left-hand

side. Finally we have∑
n

ȧn (t) e−iωnt |Ψn〉 =
γ

i~
∑
n

an (t) e−iωntĤp(t) |Ψn〉 (6.4.8)

To simplify the equation further, we test it with 〈Ψq| to get

ȧq (t) e−iωqt =
γ

i~
∑
n

an (t) e−iωnt 〈Ψq| Ĥp(t) |Ψn〉 (6.4.9)

In the above, 〈Ψq| Ĥp(t) |Ψn〉 is the q, n element of the matrix representation of the Hamilto-

nian Ĥp in the basis formed by Ψn.
The above equation is exact as of this point. To solve it further, we expand

an = a(0)
n + γa(1)

n + γ2a(2)
n · · · (6.4.10)

Using the above in (6.4.9), and matching terms of like orders, we have

ȧ(0)
q (t) = 0, ∀q (6.4.11)

or that a
(0)
q is a constant. This means that if γ = 0, or there is no perturbation, then the

only terms that remain are the leading order terms. Since these are stationary states, the
quantum system remains in these stationary states if perturbation is turned off.

By matching terms of the first order, we have

ȧ(1)
q (t) =

1

i~
∑
n

a(0)
n eiωqnt〈Ψq|Ĥp(t)|Ψn〉 (6.4.12)

where ωqn = ωq−ωn. To make things simpler, we can assume that the electron is in the m-th

stationary state before we turn on the perturbation Ĥp(t). Namely,

|Ψ〉 = a(0)
m e−iωmt|Ψm〉 = e−iωmt|Ψm〉 (6.4.13)

In the above, since if only one state exists, a
(0)
m = 1 by normalization. Then, (6.4.12) becomes

ȧ(1)
q (t) =

1

i~
a(0)
m eiωqmt〈Ψq|Ĥp(t)|Ψm〉 (6.4.14)
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We assume the perturbing Hamiltonian to be of the form:

Ĥp(t) =


0, t < 0

Ĥp0(e−iωt + eiωt), 0 < t < t0

0, t > t0

(6.4.15)

so that it is turned on only for a time window 0 < t < t0. Then for t > t0, by integrating
(6.4.14), we have

a(1)
q =

1

i~

∫ t0

0

〈Ψq|Ĥp(t
′)|Ψm〉eiωqmt

′
dt′ (6.4.16)

=
1

i~
〈Ψq|Ĥp0)|Ψm〉

∫ t0

0

(
ei(ωqm−ω)t′ + ei(ωqm+ω)t′

)
dt′ (6.4.17)

= − 1

i~
〈Ψq|Ĥp0)|Ψm〉

(
ei(ωqm−ω)t0 − 1

ωqm − ω
+
ei(ωqm+ω)t0 − 1

ωqm + ω

)
(6.4.18)

= − t0
i~
〈Ψq|Ĥp0)|Ψm〉

[
e
i(ωqm−ω)t0

2 sinc

(
(ωqm − ω)t0

2

)
+ e

i(ωqm+ω)t0
2 sinc

(
(ωqm + ω)t0

2

)]
(6.4.19)

The probability of finding the state in q-state is

P (q) = |a(1)
q |2 (6.4.20)

or

P (q) ≈ t20
~2
|〈Ψq|Ĥp0)|Ψm〉|2

[
sinc2

(
(ωqm − ω)t0

2

)
+ sinc2

(
(ωqm + ω)t0

2

)]
(6.4.21)

where we have ignored the cross terms since the sinc functions in (6.4.19) are highly peaked
at ω = ±ωqm when t0 →∞; and hence their cross terms are small.

The above equation means that the probability of transition from the m to the q eigenstate
is high only if

ω = ±ωqm = ±(ωq − ωm) (6.4.22)

or that

~ω = ±(~ωq − ~ωm) = ±(Eq − Em) (6.4.23)

The “+” sign corresponds to when the electron jumps from a low energy Em to high energy
Eq requiring the absorption of a photon with energy ~ω = (Eq − Em). The “−” sign in
(6.4.23) corresponds to the electron dropping from a high energy state Em to a low energy
state Eq emitting a photon with energy ~ω = (Em−Eq). This is called stimulated emission.7

The rule of energy level matching is known as the Fermi’s golden rule (named after Enrico
Fermi, 1901-1954). Moreover, the transition is possible only if the value of the matrix element
|〈Ψq|Ĥp0)|Ψm〉| is larger than zero. Due to certain symmetry condition, this matrix element
may evaluate to zero, forbidding transition between p and m stationary states.

7Spontaneous emission happens even when there is no field incident on the photon, and this can be
understood by the presence of vacuum field fluctuation to be discussed later.
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Appendix

A Time Independent Perturbation Theory

Figure A1: The infinite potential well on the left represents the unperturbed problem. The
middle figure represents a perturbation due to a tiny electric field. The right figure represents
a perturbation due to imperfection in fabrication or impurities.

Let us assume that we can solve a problem when it is unperturbed, such as the infinite
potential well problem. We like to solve the problem when, say there is a small electric field
in the well indicated by a potential with a gradient, or that the well is imperfect due to some
impurities indicated by a small bump (see Figure A1). The Schrödinger equation for the
perturbed system can be written as

(Ĥ0 + γĤp)|φ〉 = E|φ〉 (A1)

where Ĥ0 is the Hamiltonian of the unperturbed system whose solution is known, and γĤp

is due to the small perturbation where γ is a small parameter. Here, Ĥ0 can be the Hamil-
tonian of the infinite potential well, for instance. In the above equation, |φ〉 and E are both
unknowns, but we can write them in a perturbation series or expansion, namely

|φ〉 = |φ(0)〉+ γ|φ(1)〉+ γ2|φ(2)〉+ . . . (A2)

E = E(0) + γE(1) + γ2E(2) + . . . (A3)

Upon substituting the above series into (A1), we obtain(
Ĥ0 + γĤp

) (
|φ(0)〉+ γ|φ(1)〉+ γ2|φ(2)〉+ . . .

)
=
(
E(0) + γE(1) + γ2E(2) + . . .

)(
|φ(0)〉+ γ|φ(1)〉+ γ2|φ(2)〉+ . . .

)
(A4)

The left-hand side of (A4) can be expanded and rewritten on a power series in γ

a0 + a1γ + a2γ
2 + ... (A5)
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while the right-hand side is similarly written as

b0 + b1γ + b2γ
2 + ... (A6)

These two power series in γ are equal only if ai = bi, i = 0, 1, ...,∞.8

Equating the coefficients of the power series on both sides of (A4) we have the following
equations:
Zeroth Order:

Ĥ0|φ(0)〉 = E(0)|φ(0)〉 (A7)

First Order:
Ĥ0|φ(1)〉+ Ĥp|φ(0)〉 = E(0)|φ(1)〉+ E(1)|φ(0)〉 (A8)

Second Order:

Ĥ0|φ(2)〉+ Ĥp|φ(1)〉 = E(0)|φ(2)〉+ E(1)|φ(1)〉+ E(2)|φ(0)〉 (A9)

We assume that the zeroth order equation is known in terms of an eigenstate |ψm〉 with energy
Em. In other words

|φ(0)〉 = |ψm〉, E(0) = Em (A10)

We will use this knowledge to solve the first order equation (A8) above.
Before we proceed further, a note is in order regarding the uniqueness of the eigenvalue

problem (A1). An eigenvector is known only within a multiplicative factor. Hence, its length
is indeterminate. This non-uniqueness in its length manifests in the non-uniqueness of the
value of the perturbation series (A2) as we shall see later. To achieve uniqueness, it is best
to pin down the length of the total eigenvector given by (A2). We fix the length of the
eigenvector |φ〉 by requiring that

〈ψm|φ〉 = 1 (A11)

With this requirement, we substitute (A2) into the above. Since 〈ψm|φ(0)〉 = 1, because
|φ(0)〉 = |ψm〉, it is easy to show that 〈ψm|φ(i)〉 = 0, i > 0. As a consequence, |φ(i)〉 is
orthogonal to |ψm〉. The perturbation series is not necessarily normalized, but it can be
normalized later after the series has been calculated.

A1 First Order Perturbation

Next, to find the first order corrections to the eigenvalue and the eigenvector, we move the
unknowns |φ(1)〉 to the left of (A8). We then have(

Ĥ0 − Em
)
|φ(1)〉 = E(1)|ψm〉 − Ĥp|ψm〉 (A12)

8This can be easily proved by setting γ = 0, which immediately implies that a0 = b0. By differentiating
the power series again and let γ = 0, we prove that ai = bi etc.
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where we have made use of (A10). Notice that the above equation is non-unique since the

operator
(
Ĥ0 − Em

)
has a null space with a null space vector |ψm〉.

Testing the above equation with 〈ψm|, we have

〈ψm|Ĥ0 − Em|φ(1)〉 = E(1) − 〈ψm|Ĥp|ψm〉 (A13)

But 〈ψm|
(
Ĥ0 − Em

)
= 0 because Ĥ0|ψm〉 = Em|ψm〉. Hence, the above gives

E(1) = 〈ψm|Ĥp|ψm〉 (A14)

the first order correction to the energy of the perturbed system.
Therefore, one of the two unknowns in (A12) is found. The remaining unknown |φ(1)〉 can

be expanded in terms of the eigenfunctions of the unperturbed system, that is

|φ(1)〉 =
∑
n

a(1)
n |ψn〉 (A15)

First, testing the equation (A12) with 〈ψi|, we have

〈ψi|Ĥ0 − Em|φ(1)〉 = E(1)〈ψi|ψm〉 − 〈ψi|Ĥp|ψm〉 (A16)

Upon substituting (A15) into the above, the left-hand side evaluates to

〈ψi|Ei − Em|φ(1)〉 = (Ei − Em)
∑
n

〈ψi|a(1)
n |ψn〉 = (Ei − Em)a

(1)
i (A17)

The right-hand side of (A16), for i 6= m, is just −〈ψi|Ĥp|ψm〉. Hence

a
(1)
i =

〈ψi|Ĥp|ψm〉
Em − Ei

, i 6= m (A18)

When i = m, (A17) evaluates to zero, while the right hand side of (A16) also evaluates

to zero because of (A14). Hence a
(1)
m is undefined. We choose a

(1)
m = 0 for a number of

reasons: It makes the correction term unique since |ψ(1)〉 is orthogonal to |ψ(0)〉. It makes
the normalization of the eigenvector |φ〉 accurate to second order even though the correction
is first order. It will also make the second order corrections much simpler to find.

A2 Second Order Perturbation

To find the second order corrections, we rewrite (A9) with the unknown |φ(2)〉 on the left
hand side. Then (A9) becomes(

Ĥ0 − Em
)
|φ(2)〉 = E(1)|φ(1)〉+ E(2)|ψm〉 − Ĥp|φ(1)〉 (A19)
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Testing the above with 〈ψm|, the left hand side becomes zero as before.9 Since we have
made |φ(1)〉 orthogonal to |ψm〉, on the right-hand side, only the last two terms remain.
Consequently,

0 = E(2) − 〈ψm|Ĥp|φ(1)〉 (A20)

or

E(2) = 〈ψm|Ĥp|φ(1)〉 (A21)

Letting

|φ(2)〉 =
∑
n

a(2)
n |ψn〉 (A22)

and substituting it into the left side of (A19), testing with 〈ψi|, we have

(Ei − Em)a
(2)
i = E(1)〈ψi|φ(1)〉+ E(2)δim − 〈ψi|Ĥp|φ(1)〉 (A23)

Therefore, for i 6= m,

a
(2)
i =

〈ψi|Ĥp|φ(1)〉
Em − Ei

− E(1)a
(1)
i

Em − Ei
(A24)

When i = m, both sides of (A23) vanish, and a
(2)
m is undefined. Again, we pick a

(2)
m = 0 to

obtain a unique solution.

A3 Higher Order Corrections

The above procedure can be generalized to arbitrary order. By induction, we notice that the
equivalence of (A9) to p-th order is

Ĥ0|φ(p)〉+ Ĥp|φ(p−1)〉 = E(0)|φ(p)〉+ E(1)|φ(p−1)〉+ · · ·+ E(p)|φ(0)〉 (A25)

The above can be rewritten as(
Ĥ0 − E(0)

)
|φ(p)〉 = E(1)|φ(p−1)〉+ · · ·+ E(p)|φ(0)〉 − Ĥp|φ(p−1)〉 (A26)

Testing the above with 〈ψm| gives

E(p) = 〈ψm|Ĥp|φ(p−1)〉 (A27)

Letting

|φ(p)〉 =
∑
n

a(p)
n |ψn〉 (A28)

9Again, the above is non-unique for the same reason cited for (A12).
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in (A25), and testing with 〈ψi|, one can easily show, for i 6= m, and after noting that
E(0) = Em, |φ(0)〉 = |ψm〉, that

a
(p)
i =

1

Em − Ei

(
〈ψi|Ĥp|φ(p−1)〉 − E(1)a

(p−1)
i − E(2)a

(p−2)
i + · · · − E(p−1)a

(1)
i

)
(A29)

It is to be noted that with modern advent of computer technology, and given the avail-
ability of numerical methods, the calculation of perturbation theory to very high order is
laborious and not necessary. However, a perturbation correction can give us insight on how
a small change in the Hamiltonian can change the solution.
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Chapter 7

Quantum Mechanics in Crystals

7.1 Introduction

The quantum mechanics of an electron in a crystalline lattice is becoming increasingly impor-
tant because of the advent of nano-technology. If a crystalline material is perfect, in principle,
an electron can move about in it with no resistance. But this is not true. The electron wave
function interacts and scatters off the crystalline lattice due to non-ideal crystalline structure
and its thermal vibration.

Also, the electron wave function will lose phase coherence as it travels due to its interaction
with its environment such as lattice vibration and impurity scattering. The time for which
a wave function loses phase coherence is the phase relaxation time. The distance for which
the electron travels before it loses phase coherence is the coherence length. If the coherence
length is much larger than the de Broglie wavelength of the electron, the electron can be
approximately described by a particle.

Moreover, there are impurities or defects that would scatter the electron, or electron wave
causing it to lose momentum. The distance that an electron would travel without experiencing
scattering is called the mean-free path of the electron. If the bulk material is much larger
that the mean-free path, then an electron will experience much scattering as it travels from
one end of the bulk material to the other end. However, if the bulk material is small, so that
the electron can travel from one end to the other without experiencing scattering, we call
this ballistic transport. In this regime, the wave nature of the electron is important, and it is
expedient to study an electron as a wave that propagates through crystalline materials.

When the bulk material is much larger than the mean-free path and the coherence length,
we are in the regime of macroscopic transport where the electron behaves like a particle. Scat-
tering events are important, and the electron motion is hindered by them. These scattering
events develop into resistance for the electrons. The transport of the electron at the macro-
scopic level can be described by the drift-diffusion equations, which follow from Boltzmann’s
transport equation. The currents due to electron and hole movements are:

Jn(r) = −qµnn(r)∇V (r) + qDn∇n(r) (7.1.1)

Jp(r) = −qµpp(r)∇V (r)− qDp∇p(r) (7.1.2)
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where q is the charge of the particle, µn and µp are the mobilities of the electrons and
holes respectively, n and p are their densities respectively, and Dn and Dp are their diffusion
coefficients. Since −∇V gives the electric field, the first term represents the current due to
the electric field called the drift current, while the second term expresses that the particle
will move from region of high concentration to low concentration, a diffusion effect.

In this chapter, we will discuss mainly on mesoscopic transport regime where the bulk
material is much smaller than the mean-free path of the electron. The movement of electron
on the lengthscale of an atom is called microscopic transport regime as when an electron moves
through a crystalline lattice. The wave nature of electron is important in these regimes.

In a crystal, the atoms are located in a periodic lattice. Hence, when an electron wave
propagates on a lattice, it is propagating in a periodic structure. However, the real world is
not that simple. Usually, there are more than one electron traveling in a lattice. The electrons
see each other’s electric field or potentials. There will be electron-electron interaction that has
to be accounted for. Moreover, electrons are fermions meaning that they obey Pauli exclusion
principle. Two electrons cannot be in the same state simultaneously. There are many-body
effects, but we will ignore them here. The many-body effect can be lumped approximately
into an effective potential. We will assume that the effective potential is still periodic. This
is true when the system is in equilibrium or quiescent state, and may not be true when the
electrons are not in equilibrium with respect to each other.

Another effect is that as an electron moves through a lattice, the attractive force between
the electron and a nucleus of the atoms distorts the lattice locations. This gives rise to lattice
vibrations called phonons. We will ignore electron-phonon coupling here.

In a periodic lattice, the atoms are located at the lattice points given by

RL = n1a1 + n2a2 + n3a3 (7.1.3)

where a1, a2, a3 are lattice vectors, and n1, n2, n3 are integers. Every lattice point can be
related to every other lattice point by a proper choice of n1, n2, and n3.

Assuming that an electron sees a periodic potential in a lattice, then

VP (r + RL) = VP (r) (7.1.4)

The single electron sees this periodic potential and its wavefunction satisfies[
− ~2

2me
∇2 + VP (r)

]
ψ(r) = Eψ(r) (7.1.5)

We will study next the kind of wave that can propagate in this periodic potential, known as
Bloch-Floquet waves.1 The Bloch-Floquet wave analysis will also explain the formation of
band structures, such as valence and conduction bands, in crystalline solids.

7.2 Bloch-Floquet Waves

2

1In the subsequent discussions, we will replace me with m, with implicit understanding that this is the
mass of the electron.

2Named after Andre Bloch (1893-1948) and Gaston Floquet (1847-1920).
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Let us study the case of a wave propagating in a 1-D periodic structure, where V (x) may
look like that of Figure 7.1.

Figure 7.1: A 1D periodic structure of a potential profile for V (x) where a Bloch-Floquet
wave can travel on it.

The periodicity of the potential is a. Let us assume that the wave that can exist on such
a structure is of the form

ψ(k, x) = eikxup(x) (7.2.1)

This wavefunction must satisfy the 1-D Schrödinger equation that[
− ~2

2m

d2

dx2
+ VP (x)

]
ψ(k, x) = Eψ(k, x) (7.2.2)

In order for ψ(k, x) to satisfy the above, up(x) has to satisfy a certain condition. Since the
above is a periodic structure, if one translate the coordinate such that x ⇒ x + na, then
VP (x) ⇒ VP (x + na) = VP (x) which remains unchanged. Letting x ⇒ x + na in (7.2.1), we
have

ψ(k, x)⇒ ψ(k, x+ na) = eikxeiknaup(x+ na) (7.2.3)

This new wavefunction must be a solution of Schrödinger equation as well. In order for it to
satisfy (7.2.2), we require that

up(x+ na) = up(x), for all n. (7.2.4)

In other words, up(x) is a periodic function of x. Since eikna is just a constant, it is clear
that ψ(x+na) satisfies the same equation as (7.2.2). Hence, the form of (7.2.1) that satisfies
(7.2.2) has to be such that up(x) is a periodic function. Equation (7.2.1) represents a traveling
wave modulated by a periodic function up(x). However, up(x) is more rapidly varying than
eikx. Such a wave is a Bloch wave or a Bloch-Floquet wave. It is to be noted that up(x)
is a function of k as well, and we should have written up(k, x), but we assume that the k
dependence is implied.

Since up(x) is periodic function with period a, it can be expanded as a Fourier series,
namely

up(x) =

∞∑
n=−∞

ane
i2nπx/a (7.2.5)
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Noting that the second derivative of (7.2.1) is given by

d2

dx2

[
eikxup(x)

]
= −k2eikxup(x) + 2ikeikxu′p(x) + eikxu′′p(x), (7.2.6)

substituting (7.2.1) into (7.2.2), and using the above, we have

− ~2

2m

[
−k2up(x) + 2iku′p(x) + u′′p(x)

]
+ Vp(x)up(x) = Eup(x) (7.2.7)

In the above, if Vp(x) = 0, a simple solution to the above is up(x) a constant with E =
(~k)2/(2m). Then the Bloch-Floquet wave becomes a simple traveling wave. Otherwise, we
can rewrite (7.2.7) as{

− ~2

2m

[
d2

dx2
+ 2ik

d

dx
− k2

]
+ Vp(x)

}
up(x) = Eup(x) (7.2.8)

with up(x) satisfying the periodic boundary condition within period a.
The above is a simple eigenvalue problem with eigenvector up(x) and eigenvalue E. We

can use matrix method to convert the above into a matrix equation∑
n

Hmnan = E
∑
n

Bmnan (7.2.9)

by letting up(x) =
N∑
n=1

anφn(x), and testing with φm(x). One also ensures that the choice of

basis is such that the periodic boundary condition is satisfied. Here, φn(x) are not necessarily
orthogonal. In the above,

Hmn = 〈φm|Ĥp|φn〉, Bmn = 〈φm|φn〉 (7.2.10)

where

Ĥp = − ~2

2m

[
d2

dx2
+ 2ik

d

dx
− k2

]
+ Vp (x) (7.2.11)

Notice that Ĥp is a function of k, and so Hmn is a function of k. It is to be noted that Ĥ is
a Hermitian operator since we have shown that −i~d/dx is a Hermitian operator in (5.2.51)
in Chapter 2, so is d2/dx2.

Therefore, (7.2.9) can be written as a generalized eigenvalue problem

H(k) · a = E(k)B · a (7.2.12)

with real eigenvalues. In the above, we have explicitly denoted that H(k) is a function of k.
Hence, we have to fix k in order to solve the eigenvalue problem (7.2.8), or the generalized
matrix eigenvalue problem (7.2.12). Therefore, the eigenvalue E obtained is also a function
of k, the wavenumber in the Bloch-Floquet wave (7.2.1). In general, a E(k) plot will look like
that in Figure 7.2.



Quantum Mechanics in Crystals 97

Figure 7.2: The E-k diagram or band structure diagram of a Bloch-Floquet wave propagating
in a 1D periodic structure.

7.2.1 Periodicity of E(k)

For each k value, there are many possible values of E. Also, in (7.2.1), if we let k ⇒ k+ 2pπ
a ,

where p is an integer value, then, (7.2.1) becomes

ψ (k, x)⇒ ψ (k + 2pπ/a, x) = eikxup (x) e
2ipπ
a x = eikxũp (x) (7.2.13)

Notice that e
2ipπ
a x is a periodic function; hence, it can be lumped with up (x) to form a

new ũp (x) periodic function. They both satisfy the same equation (7.2.8) with the same k
value. Therefore, up (x) and ũp (x) share the same set of eigenvalues. Consequently, E (k) is a
periodic function in k with period 2π

a . Each of this period is called the Brillouin zone (named
after Leon Brillouin (1884-1969)). The zone that is centered about the origin is called the
first Brillouin zone.

7.2.2 Symmetry of E(k) with respect to k

Furthermore, since every term in the operator of (7.2.2) is real, ψ∗(k, x) is also a solution of
it whenever ψ(k, x) is a solution. But

ψ∗(k, x) = e−ikxu∗p(x) (7.2.14)

is also a Bloch-Floquet wave with −k wavenumber. In fact, u∗p(x) remains a periodic function
that satisfies an equation that is the conjugate of (7.2.8) but with the same eigenvalue E.
Therefore, E(−k) = E(k).

Another way to see this is that if we were to set k = −k in (7.2.12), then assuming that
φn(x) is real without loss of generality, then we have

H(−k) · a = H
∗
(k) · a = E(−k)B · a (7.2.15)

since E(−k) is real. It is easy to see that this equation is just the complex conjugation
of the original equation (7.2.12), and hence, share the same set of eigenvalues. Therefore,
E(−k) = E(k).
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7.3 Bloch-Floquet Theorem for 3D

In three dimensions, the Bloch-Floquet wave looks like

ψ(k, r) = eik·rup(r) (7.3.1)

with the property that

up(r + RL) = up(r) (7.3.2)

It is to be noted that up(r) is a function of r as well. We can expand up(r) as a generalized
Fourier series

up(r) =
∑
G

aGe
iG·r (7.3.3)

where G represents points on the reciprocal lattice denoted by

G = l1b1 + l2b2 + l3b3 (7.3.4)

with the property that

eiG·RL = 1 (7.3.5)

where

RL = n1a1 + n2a2 + n3a3 (7.3.6)

In the above, li and ni, i = 1, 2, 3 are integers. The above property indicates that up(r) in
(7.3.3) is periodic as indicated by (7.3.2). The summation in (7.3.2) is over all possible values
of G or l1, l2, and l3.

One can solve for b1, b2 and b3 to yield

b1 =
a2 × a3

a1 · (a2 × a3)
2π, b2 =

a3 × a1

a1 · (a2 × a3)
2π, b3 =

a1 × a2

a1 · (a2 × a3)
2π (7.3.7)

for this G. Then by back substitution, (7.3.5) is satisfied. Futhermore,

ψ(k + G, r) = eik·reiG·rup(r) (7.3.8)

where

eiG·(r+RL) = eiG·r (7.3.9)

Since it is a periodic function on the lattice, the eiG·r term can be lumped with the unit cell
function up(r); therefore, the new Bloch-Floquet wave is

ψ(k + G, r) = eik·rũp(r) (7.3.10)

It is of the same form as (7.3.1); and hence will yield the same set of eigenvalues as ψ(k, r).
Consequently, the lattice points are defined by the lattice vector RL, and the reciprocal lattice
points are defined by the reciprocal lattice vector G. The Brillouin zone is defined by the
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Figure 7.1: The first Brillouin zone of the FCC (face centered cubic) lattice (from Wikipedia).

Figure 7.2: The band structure diagram of Silicon along prescribed lines in the first Brillouin
zone (from Warwich Physics Dept.).
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reciprocal lattice points. The first Brillouin zone is the first unique zone centered around the
origin. These zones in 3D can be quite complicated as shown in Figure 7.1.

The band structure diagram is rather complicated and is usually plotted with E versus k
vector along prescribed lines in the first Brillouin zone as shown in Figure 7.2.

We can take yet another viewpoint of the existence of band structure in a crystal. We
have studied the tight-binding model of two identical quantum wells. This can be extended to
two identical atoms as shown in Figure 7.3. The figure shows how the energy of the trapped
modes of the atoms are split versus the spacing of the atoms (as we have found on our tight
binding model in the previous chapter). The closer the spacing, the stronger is the coupling
between the modes, and the larger is the split in the levels of the degenerate modes.

Figure 7.3: The energy levels of two atoms versus the atomic spacing. (from Seeger, Semi-
conductor Physics).

If we have a system with billions of atoms, each atom has its energy levels due to trapped
modes in the atom. If the inter-atomic distance is large, there is no interaction between
the atoms, and energy levels will be many billion times degenerate. However, when the
interatomic spacing becomes smaller, the wavefunctions from one atom will overlap with the
neighboring atoms through tunneling. The interatomic coupling, like the example of the
tight-binding model, will split the energy levels and make them into a continuous band of
energy. This give rise to energy band where energy states exist and energy band where no
states exist, yielding the band structures we have seen.

As we have seen in the simple case of the tight-binding model study of two quantum wells,
the degenerate modes split into even and odd mode coupling between them. In one case,
the modes are in phase, and the other case, the modes are out of phase with respect to each
other. When multitude of mode coupling prevails, there could be infinitely many possible
phase relations between the atomic modes, giving rise to Bloch-Floquet wave with different
exp(ik · r) phase variations across the lattice. The Bloch-Floquet wave establishes the phase
relationship between different trapped modes of the atoms as they couple to each other.
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Figure 7.4: The genesis of band structure as the interatomic spacing of the atoms of the
lattice becomes smaller and smaller. (From M. Fox, Quantum Optics.)

7.4 Fermi-Dirac Distribution Function

Now that we know how band structures come about, it will be prudent to introduce the
Fermi-Dirac distribution function. We will first present this function and derive it later in
the course. The Fermi-Dirac distribution function, also called the Fermi-Dirac function, is
derived based on Boltzmann law and the Pauli exclusion principle for fermions since electrons
are fermions. The Pauli exclusion principle states that no two identical electrons can be in
the same state simultaneously. But they are non identical if they have different spins. Hence,
each state can admit a spin-up electron, and a spin-down electron.

The Fermi-Dirac distribution function is given by

f(E) =
1

1 + e(E−Ef )/(kBT )
(7.4.1)

where Ef is the Fermi level also called the chemical potential. Ef is actually a function of
temperature, but if we assume it to be a constant, f(E) for different T ’s looks like those
shown in Figure 7.1. In the above, kB = 1.380650 × 10−23 joules/Kelvin, the Boltzmann
constant. The value kBT = 25.6 meV at room temperature of 25◦ C or 298◦ K.

The Fermi-Dirac function gives the probability that a state with energy E is being oc-
cupied. Hence, 0 < f(E) < 1. For T = 0, it has a binary value of 1 for E < Ef and 0
for E > Ef . So all energy states below Ef are occupied and unoccupied for E > Ef . For
T > 0, due to thermal agitation, some electrons are removed from E < Ef and moved to
E > Ef states, giving rise to the distribution as shown. Therefore, as electrons are added
to the crystalline material, the low energy states will be filled first, followed by high energy
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f(E)

EEf

T=0

T>0

Figure 7.1: The Fermi-Dirac distribution function at T = 0 and at T > 0.

states. By the Pauli exclusion principle, each energy state can admit at most two electrons,
one with spin up, and the other with spin down. Their probability of occupying the state
is in accordance with Fermi-Dirac distribution function. The Fermi energy, as we shall see
later, is defined to be the Fermi level at zero temperature.

7.4.1 Semiconductor, Metal, and Insulator

Conduction Band

Valence Band

Semiconductor

E

Ef

Conduction Band

Valence Band

Metal

E

Ef

Conduction Band

Valence Band

Insulator

E

Ef

Figure 7.2: The relationship of the Fermi level to the conduction and valence bands for
semiconductor, metal, and insulator.

In a semiconductor, Ef is sandwiched between the conduction band and the valence
band. At T = 0, the valence band is completely occupied, and there are no electrons in the
conduction band. Therefore, no conduction is possible. For T > 0, or at room temperature,
the band gap is not large (typical 1 eV) compared to kBT so that some electrons can jump
from the valence band to the conduction band according to Fermi-Dirac distribution function.
The electrons in the conduction band start to conduct. Moreover, empty states are left behind
in the valence band known as holes, and they can also conduct electricity.
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For a metal, the Fermi level is in the conduction band. So even if T = 0, there are
electrons in the conduction band allowing the flow of electrons. For an insulator, the band
gap is relatively large (typically 4 eV) compared to kBT at room temperature, and the
Fermi level is far from the conduction band, giving zero probability that an electron is in the
conduction band. Hence, it cannot conduct electricity.

In semiconductors, the Fermi level moves toward the conduction band when the material
is doped with n type impurity since more electron carriers are generated. Conversely, the
Fermi level moves toward the valence band when the material is doped with p type impurity
since more holes are generated.

7.4.2 Why Do Electrons and Holes Conduct Electricity?

E

k

E+∆EE-∆E

Figure 7.3: When the quantum system of a crystalline material is in equilibrium, the Bloch-
Floquet modes correspond to +k are equally likely compared to −k. Therefore, there is no
net momentum, and hence, no net movement of electrons. However, in the partially filled
conduction band, the electrons can readjust themselves so that some have larger +k values
compared to −k values, giving rise to a net momentum, and hence movement of the electrons.

In some courses, we are told that electrons conduct electricity because there are empty
sites so that electrons can move about and hence gives rise to conduction. But the wave
picture of an electron implies that it can be simultaneously everywhere. From a wave picture
viewpoint, this story can be quite different. In the valence band, for every electron that has
a ~k momentum, there is a state with a −~k momentum. The net momentum is always zero,
and a fully filled valence band cannot conduct electricity. But in the conduction band, when
an electric field is applied, some electrons can move to a higher energy state E + ∆E with
k + ∆k, while others can move to E − ∆E with −k + ∆k. Hence, there is a net gain of
2~∆k in the total momentum of the electrons giving rise to electron flow. Similarly, if empty
states are created in the valence band, the states can rearrange themselves so that there is a
net momentum for the electrons, and hence electricity flows. This is the wave picture of how
electrons and holes conduct electricty.
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7.5 Effective Mass Schrödinger Equation

The effective mass Schrödinger equation is yet another approximate picture of an electron
in a crystalline lattice. It has been used with astounding success for physical phenomena
prediction, and gives rise to many new technologies.

The bottom of many conduction band is parabolic. In the vicinity of k = 0, we can write
the E-k relation as

Ek =
~2k2

2me
+ V (7.5.1)

where me is the effective mass chosen to fit the curvature of the parabola, and V is the energy
at the bottom of the conduction band. It is to be emphasized that this V is very different from
the Vp that has been discussed earlier. Here, V is slowly varying over the lattice structure
while Vp varies on the length scales of the lattice constants.

We can write a wave packet as a superposition of waves with different energies or k values,
namely

ψ(r, t) =
∑
k

ckuk(r)eik·re−iωkt, ~ωk = Ek (7.5.2)

We are interested in electrons near the bottom of the conduction band where k ' 0. Then
we can approximate

uk(r) ' u0(r) (7.5.3)

This can be seen from (7.2.8) also when k → 0; namely, uk(r) is weakly dependent on k when
k is small. Then

ψ(r, t) ' u0(r)
∑
k

cke
ik·re−iωkt

= u0(r)ψe(r, t) (7.5.4)

where ψe(r, t) is the slowly varying envelope function. In other words, it changes little over
many lattice constants. One defines

ψe(r, t) =
∑
k

cke
ik·re−iωkt (7.5.5)

We can show, using Ek = ~ωk and (7.5.1), that

i~
∂ψe(r, t)

∂t
=
∑
k

ckEke
ik·r−iωkt

=
∑
k

ck

(
~2k2

2me
+ V

)
eik·r−iωkt

=

(
−~2∇2

2me
+ V

)∑
k

cke
ik·r−iωkt (7.5.6)
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or

i~
∂ψe(r, t)

∂t
=

(
−~2∇2

2me
+ V

)
ψe(r, t) (7.5.7)

The above is the effective mass Schrödinger equation. It is valid when k is small, or eik·r is
slowly varying compared to the lattice spacing a. In the above, we can assume that V (r) is
slowly varying, and that the effective mass me(r) is also a slowly varying function of r. Then
the above can be correctly written as

−~2

2
∇ · 1

me(r)
∇ψe(r, t) + V (r)ψe(r, t) = i~

∂

∂t
ψe(r, t) (7.5.8)

The essence of the above approximation is that if the material properties are slowly varying
with respect to the lattice spacing, an electron “sees” locally an environment of an infinite
lattice. Consequently, if there are two domains with different V and me, the above equation
induces the boundary conditions at the interface of the domains as

ψe1(r) = ψe2(r), r ∈ S (7.5.9)

1

me1

∂

∂n
ψe1(r) =

1

me2

∂

∂n
ψe2(r), r ∈ S (7.5.10)

where S is the interface separating the two domains and ∂/∂n refers to normal derivative.
Even though V (r) and me(r) have jump discontinuities at such an interface, we assume that
the discontinuities are still slowly varying compared to the lattice spacings.

It is to be noted that the particle current that we have defined earlier in (4.4.27), Chapter
4, is proportional to

1

me(r)
ψ∗e(r, t)∇ψe(r, t) (7.5.11)

Hence, the boundary conditions (7.5.10) and (7.5.10) correspond to the continuity of the
normal component of the particle current across an interface. The normal component of the
particle current is given by

1

me(r)
ψ∗e(r, t)n̂ · ∇ψe(r, t) (7.5.12)

which is proportional to the terms in (7.5.10) since n̂ · ∇ = ∂/∂n.

7.6 Heterojunctions and Quantum Wells

When two identical semiconductor crystalline materials are joint together, but doped differ-
ently, the junction is known as a homojunction. However, when the two crystalline materials
are different, we have a heterojunction. We now know that an electron propagating in a semi-
conductor crystalline lattice resembles an electron in vacuum, except that it has a different
effective mass, and it sees a potential that is the bottom of the conduction band. Hence, when
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Vacuum Level 

Conduction Band

Valence Band

321

Figure 7.1: Heterojunctions where the energy levels can be aligned using Anderson’s rule.
Multiple heterojunctions can be used to make quantum wells.

two different materials are joint together to form a junction, we can use Anderson’s rule to
line up the energy level. Anderson’s rule requires that the vacuum levels of the two materials
be aligned. But the conduction band of the two materials need not be aligned, since the two
materials can have different electron affinity χ. The electron affinity χ is the energy needed
to lift an electron from the bottom of the conduction band to the vacuum level.

Because the electron follows the bottom of the conduction band, it will see a quantum
well when more than one heterojunctions are used. However, Anderson’s rule is not perfect,
as the effective mass model is only good for infinite lattice and imperfections can exist at the
heterojunctions. Therefore, the rule is used as a guide.

In order to grow one material on top of another material without defects, the lattice
constants of the two materials have to be matched. A popular alloy compound for such
growth is alluminum gallium arsenide, AlxGa1−xAs, where x denotes the percentage of Al
in the alloy. The lattice constant remains invariant as x is varied, but the bandgap of the
compound changes.

In the early days, vapour-phase epitaxy (VPE) and liquid-phase epitaxy (LPE) were used
to grow semiconductor crystals. Later, metal-organic chemical vapor deposition (MOCVD),
and molecular beam epitaxy (MBE) were used. The latter technologies allow the crystalline
structure grown layer by layer. Many new technologies ensue in this area: heterojunction
bipolar transistor (HBT), high electron mobility transistor (HEMT), multiple quantum well
(MQW) lasers, as well as light emitting diode (LED) and laser diode (LD). Nick Holonyak
(1928-) plays a major role in the development of LED and heterojunction semiconductor laser.
He also recently developed the transistor laser with Milton Feng (1950-).

The use of heterojunctions confines the electrons and photons to a potential well, allowing
for the making of the first room temperature semiconductor laser. A Nobel Prize was awarded
to Herbert Kroemern (1928-) and Zhores Alferov (1930-) in 2000 for their contributions in
this area.

7.7 Density of States (DOS)

The density of states is a function of energy E that gives the number of states per unit
energy interval. It is important for studying the optical transition probability and optical
absorption spectral of materials. As can be seen, when tight binding model is used to model
the energy levels of a cluster of atoms, many more energy levels are generated due to inter-
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atomic coupling. When one has an infinite number of atoms, a continuum of energy levels
are generated. Then the DOS becomes a continuum function of the energy. The density of
states g(E) can be neatly written as

g(E) =
∑
α

δ(E − Eα) (7.7.1)

The above resembles the spectrum of say the hydrogen atom with energy levels for different
Eα, when the density of states is very sparse. These energy levels are discrete and countable
at this point. The above is valid even when the number of levels per unit energy is very high.
Moreover, the number of states between E0 and E0 + ∆E is given by

N∆E =

∫ E0+∆E

E0

g(E)dE (7.7.2)

The above fits the definition of DOS.
To find the DOS a bulk material, its energy levels can be first studied as the energy levels

of an electron bounded in a cuboid box. We can use periodic boundary condition to discretize
the k vector in the Bloch-Floquet wave so that it is countable, or that

kL = l1
2π

L1
â1 + l2

2π

L2
â2 + l3

2π

L3
â3 (7.7.3)

In 1D, it is

kl = l
2π

L
= l∆k (7.7.4)

where ∆k = 2π
L . When we count the number of discrete modes, we have 1 mode per ∆k on

the kl real line. Or the density of states is

g1D (k) = 1/∆k = L/2π (7.7.5)

The number of states is proportional to the length of L. In 2D, the density of states can be
easily derived to be

g2D (k) = L1L2/ (2π)
2

= A/ (2π)
2

(7.7.6)

In 3D, it becomes
g3D (k) = L1L2L3/ (2π)

3
= V/ (2π)

3
(7.7.7)

We can normalize the density of states with respect to length L, area A, and volume V for
1D, 2D, and 3D, respectively. Then

g1D (k) = 1/2π, g2D (k) = 1/ (2π)
2

, g3D (k) = 1/ (2π)
3

(7.7.8)

We may want to count the density of states per unit energy instead as shown by the above
E-k diagram. Even though the states are evenly spaced on the k line, they are not evenly
spread on the E line, thereby, altering the density of states per ∆E. In general, we can write,
in 3D,

g3D (E) dE = 2g3D (k) d3k = 2g3D (k) 4πk2dk
= 8πg3D (k) k2 dk

dE dE
(7.7.9)
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k 0    k1     k2    k3     k4 
 

Figure 7.1: If every state on the k line corresponds to a state on the E line, then the density
of states per unit length on the E line is different from that on the k line.

where g3D(E) is the density of states per unit energy, while g3D (k) is the density of states
per unit wavenumber. We put a factor of 2 for two electron states per energy state.

Therefore, the relation between DOS on the E line and the k line is

g3D(E) = 8πg3D(k)k2 dk

dE
(7.7.10)

Since

E =
~2k2

2me
+ V (7.7.11)

for a free electron in 3D, we have

k =
√
E − V

√
2me

~
(7.7.12)

dk

dE
=

√
me

2~2

1√
E − V

(7.7.13)

and

g3D(E) =
1

2π2

(
2me

~2

) 3
2

(E − V )
1
2 (7.7.14)

The above is the DOS in the conduction band of a bulk material. A plot of this DOS is given
as solid line in Figure 7.3.
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7.7.0.1 Fermi Level and Fermi Energy–An Application of DOS

The electron density in a bulk material is given by

N =

∫ ∞
0

g3D(E)f(E)dE (7.7.15)

where f(E) is the Fermi-Dirac distribution function given in (7.4.1). When T changes, the
electron density remains constant, but f(E) changes in shape. Therefore, Ef in (7.4.1) has to
change to maintain the constancy of N : Ef is a function of temperature T . The value of Ef
at T = 0 is known as the Fermi energy EF . In this case, the integral above can be truncated
abruptly at E = EF , we can rewrite it as

N =

∫ EF

0

g3D(E)f(E)dE (7.7.16)

From knowing N which can be ascertained by counting the number of conduction electrons,
we can obtain the value of EF , the Fermi energy, from the above equation.

7.7.1 DOS in a Quantum Well

In a 1D quantum well, the potential varies as a function of z, but is independent of x and y.
Then the effective mass Schrödinger equation becomes

−~2

2
∇ 1

me(z)
∇ψ(r) + V (z)ψ(r) = Eψ(r) (7.7.17)

We can further separate the z variation from the x and y variations to get

− ~2

2me
∇2
sψ(r)− ~2

2

∂

∂z

1

me

∂

∂z
ψ(r) + V (z)ψ(r) = Eψ(r) (7.7.18)

where ∇2
s = ∂2

∂x2 + ∂2

∂y2 .
By separation of variables, we let

ψ(r) = ψn(z)ψs(rs) (7.7.19)

where rs = x̂x+ ŷy. Then, we can show assuming me is constant, that3

− ~2

2me
∇2
sψs(rs) = Esψs(rs) (7.7.20)

and

−~2

2

d

dz

1

me

d

dz
ψn(z) + V (z)ψn(z) = Enψn(z) (7.7.21)

3When me is not a constant, the problem is still separable, but the solution is more complicated.
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In the above

E = Es + En (7.7.22)

Equation (7.7.21) can be solved for the eigenvalues En. For example, it can be the 1-D finite
potential well problem, or the infinite potential well problem. Alternatively, it can have a
complicated V (z) and an me(z) that are amenable to numerical methods only.

In the x-y direction, we let
ψ(rs) ∝ eiks·rs (7.7.23)

where ks = x̂kx + ŷky. Then,

Es =
~2k2

s

2me
(7.7.24)

where k2
s = k2

x + k2
y. To make the solution simple, it is better to assume that me is constant.

Therefore, the total E-ks diagram looks like that shown in Figure 7.2

Figure 7.2: The subband E-ks relation of a quantum well.

In general, g2D(ks) = 1
(2π)2 . We need to transfer this from the variable ks to variable Es

using (7.7.24). And we have

g2D(Es)dEs = 2g2D(ks)2πks
dks
dEs

dEs (7.7.25)

Finally, we get the DOS in terms of Es as

g2D(Es) =
me

π~2
(7.7.26)

which is a constant independent of Es. But the total E − ks diagram is shown in Figure 7.2.
We can then express the DOS in terms of variable E.

Hence, if we march along the E-line from 0 upward, the DOS as a function of total E is
shown in Figure 7.3. We pick up density of states contribution from subband n as E > En.
Hence, the total DOS can be written as

g2D(E) =
me

π~2

∑
n

θ(E − En) (7.7.27)
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Figure 7.3: The density of states of a 2D quantum well compared to that of a 3D bulk
material.

If the 1D quantum well is an infinite potential well, the energy is given by

En =
~2

2me

(nπ
L

)2

(7.7.28)

But density of states for a 3D bulk material is

g3D(E) =
1

2π2

(
2me

~2

) 3
2

E
1
2 (7.7.29)

If we evaluate this at E = En, we have

g3D(En) =
me

π~2

(n
L

)
= g2D

n

L
(7.7.30)

where g2D here refers to the value in (7.7.26). Therefore, when we plot g2D(E)/L versus E,
where g2D(E) is as given in (7.7.27), it touches the g3D at En values as shown in Figure 7.3.
In other words, every time a new subband is encounter when E is increasing, the value jumps
by g2D/L.

When L becomes large, so that the quantization level in the quantum well becomes finer,
the DOS plot versus total E is shown in Figure 7.4. The DOS for a quantum well resembles
that of a bulk material.

7.7.2 Quantum Wires

Quantum wires can be made by etching a quantum well until the electron is confined in a
rod-like region, like a dielectric rod waveguide. In this case, the wavefunction satisfies the
following equation

−~2

2
5s ·

1

me
5s ψ(r)− ~2

2me

∂2

∂z2
ψ(r) + V (x, y)ψ(r) = Eψ(r) (7.7.31)

Similar to separation of variables, we assume that

ψ(r) = eikzzψmn(x, y) (7.7.32)
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Figure 7.4: The density of states of a 2D quantum well compared to that of a 3D bulk material
when the width of the quantum well L is large.

Substituting (7.7.32) into (7.7.31), we have

−~2

2
5s ·

1

me
5s ψ(rs) + V (rs)ψmn(rs) = Emnψmn(r) (7.7.33)

Emn = E − ~2k2
z

2me
(7.7.34)

We can assume me to be constant to make the solution simple. The above form gives us

kz =

√
2me

~
√
E − Emn (7.7.35)

For infinite rectangular potential well case, an Emn can be found in closed form yielding

Emn =
~2

2me

[(
mπ

L1

)2

+

(
nπ

L2

)2
]

(7.7.36)

where L1 and L2 are the two sides of the rectangular rod. We can get the density of states as

g1D(E)dE = 4g1D(kz)
dkz
dE

dE =
1

π

√
2me

~
1√

E − Emn
dE (7.7.37)

where g1D = 1/(2π). The factor of 4 after the first equality comes about because for every
energy state, two electrons can occupy it, and that there are two kz states, corresponding to
±kz states, for every energy state. Consequently,

g1D(E) =
1

π

√
2me

~
1√

E − Emn
(7.7.38)

which is singular at E = Emn. The reason is that the E − kz relationship in (7.7.34) is
parabolic, and the mapping at the bottom of the parabola compresses the density of states
into a high value.
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Figure 7.5: The density of states of a quantum wire showing the effect of the subbands plotted
on different scales.
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When many subbands are included the DOS is

g1D(E) =
1

π

√
2me

~
∑
m,n

1√
E − Emn

θ(E − Emn) (7.7.39)

where θ is a unit step function. The plot of density of states versus E is shown in Figure
7.5. When the size of the quantum wire becomes large, the DOS resembles that of the bulk
material.

When we have quantum dots, the density of states will have spikes or delta functions at
the resonant energy of the dots. It makes quantum dots behave like artificial atoms.

The density of states is important for determining the absorption and conduction prop-
erties of semiconductor materials. The availability of electron states indicate the number of
electrons that can participate in electricity conduction. For instance, the number of electron
in the conduction band is given by

N =

∫ ∞
Ec

g(E)f(E)dE (7.7.40)

where Ec is the bottom of the conduction band, g(E) is the DOS, and f(E) is the Fermi-Dirac
distribution.

The availability of states in different subbands affects the optical absorption property of
quantum wells as shown in Figure 7.6. The first peak corresponds to the absorption from the
first subband, and the second peak corresponds to the second subband absorption.

In this chapter, when we discuss the propagation of an electron in a crystalline lattice, we
have ignored the many-body effect, or the inter-electron effect. Each electron has a Coulomb
potential around itself, and it will affect the nearby electrons. But this many body problem is
a very difficult to solve, and is usually handled with the density function theory, introduced
by Kohn and Sham. Walter Kohn was awarded the Nobel Prize in 1998 with John Pople on
this work.
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Figure 7.6: The density of states of a quantum well affects the intersubband optical absorption
of a quantum well.
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Chapter 8

Angular Momentum

8.1 Introduction

In quantum mechanics, we learn that travelling wave eikx carries a linear momentum propor-
tional to ~k. Hence, the more oscillatory the wave is, the higher the momentum it carries.
However, when an electron is trapped inside the potential of an atom, the wave is not a lin-
early travelling wave, but a wave that swirls around the nucleus of the atom. Hence, the wave
carries mostly angular momentum. The magnitude of this angular momentum, intuitively, is
proportional to the angular variation of the wavefunction.

If we take Schrödinger’s Equation in free space, it is given by

− ~2

2m0
∇2ψ(r) = Eψ(r) (8.1.1)

We can rewrite this as (
∇2 + k2

0

)
ψ(r) = 0 (8.1.2)

where k2
0 = 2m0E/~2. The above is the Helmholtz wave equation (named after Herman von

Helmholtz, 1821-1894) whose solution is well known. In cylindrical coordinates, it is(
1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2

∂2

∂φ2
+

∂2

∂z2
+ k2

0

)
ψ(ρ, φ, z) = 0 (8.1.3)

where ρ =
√
x2 + y2, φ = tan−1(y/x). In spherical coordinates, it is(

1

r2

∂

∂r
r2 ∂

∂r
+

1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

r2 sin2 θ

∂2

∂φ2
+ k2

0

)
ψ(r, θ, φ) = 0 (8.1.4)

where r =
√
x2 + y2 + z2, θ = cos−1(z/r), φ = tan−1(y/x).
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8.1.1 Electron Trapped in a Pill Box

We will first solve the above equation in cylindrical coordinates to gain physical insight into
the wave-angular momentum relationship. Hence, we study the case of an electron trapped
inside a pill box. The solutions to Helmholtz equation can be found by the separation of
variables. For example, to solve (8.1.3), we let

ψ(ρ, φ, z) = R(ρ)Φ(φ)Z(z) (8.1.5)

Using (8.1.5) in (8.1.3) yields

Φ(φ)Z(z)
1

ρ

∂

∂ρ
ρ
∂

∂ρ
R(ρ) +R(ρ)Z(z)

1

ρ2

∂2

∂φ2
Φ(φ)

+R(ρ)Φ(φ)
∂2

∂z2
Z(z) + k2

0R(ρ)Φ(φ)Z(z) = 0 (8.1.6)

To solve the above, we propose two eigenvalue problems,

∂2

∂z2
Z(z) = −k2

zZ(z) (8.1.7)

∂2

∂φ2
Φ(φ) = −n2Φ(φ) (8.1.8)

The solutions to the above are easily found:

Z(z) = e±ikzz (8.1.9)

Φ(φ) = e±inφ (8.1.10)

By so doing, Equation (8.1.6) becomes

1

ρ

d

dρ
ρ
d

dρ
R(ρ)− n2

ρ2
R(ρ) + k2

ρR(ρ) = 0 (8.1.11)

where

k2
ρ = k2

0 − k2
z (8.1.12)

Equation (8.1.11) is the Bessel equation (named after Friedrich Bessel, 1784-1846) where solu-
tions are Bessel function Jn(kρρ) and Neumann function Yn(kρρ) (named after Carl Gottfried
Neumann, 1832-1925). Here, n is the order of these functions. So the general solution (8.1.5)
becomes

ψ(ρ, φ, z) = [AJn(kρρ) +BYn(kρρ)] e±inφe±ikzz (8.1.13)

We can now put an electron in a pill box whose wall is an infinite potential as shown
in Figure 8.1. Since Yn (kρρ) → ∞, when ρ → 0, we set B = 0 to eliminate the Neumann
function. Also, ψ(ρ, φ, z) has to be regular and finite inside the pill box. Matching boundary
conditions at the two ends of the pill box, we have

ψ (ρ, φ, z) = AJn (kρρ) e±inφ sin
(pπ
L
z
)

(8.1.14)
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Figure 8.1: The geometry of a cylindrical pill box where an electron is trapped.

Table 8.1: The first few zeros of Bessel functions:

m ζ0m ζ1m ζ2m ζ3m ζ4m ζ5m
1 2.4048 3.8317 5.1356 6.3802 7.5883 8.7715
2 5.5201 7.0156 8.4172 9.7610 11.0647 12.3386
3 8.6537 10.1735 11.6198 13.0152 14.3725 15.7002
4 11.7915 13.3237 14.7960 16.2235 17.6160 18.9801
5 14.9309 16.4706 17.9598 19.4094 20.8269 22.2178

where kz = pπ/L, for all integer p.
The boundary condition at ρ = a is that ψ (a, φ, z) = 0, or that

Jn (kρa) = 0 (8.1.15)

The zeros of Bessel functions are tabulated and given by

Jn (ζnm) = 0 (8.1.16)

The first few zeros are given in Table 8.1. Hence, we obtain that

kρ = ζnm/a (8.1.17)

So (8.1.14) becomes

ψ (ρ, φ, z) = AJn

(
ζnm

ρ

a

)
e±inφ sin

(pπ
L
z
)

(8.1.18)

In the above, we see a standing wave sin (pπz/L) in the z direction, a standing wave repre-
sented by Jn

(
ζnm

ρ
a

)
in the ρ direction, and a travelling wave e±inφ in the φ direction. The
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Figure 8.2: The Bessel function of different order as a function of its argument. Notice that
the higher the order, the smaller the Bessel function is at the origin.

larger n is, the more rapidly varying is the travelling wave as a function of φ, and the more
angular momentum it carries.

In fact, plots of Jn (x) versus x for different n is shown in Figure 8.2.1 We notice that
the larger n is, the more rapidly varying e±inφ is, and the more the Bessel function Jn (x) is
pulled away from the origin. This is characteristic of a particle swirling around in a circle.
The centrifugal force is keeping the particle away from the origin.

From the fact that

k2
0 = k2

ρ + k2
z =

(
ζnm
a

)2

+
(pπ
L

)2

=
2m0E

~2
(8.1.19)

we can derive that the energy levels of the trapped electron are given by

Enmp =
~2

2m0

[(
ζnm
a

)2

+
(pπ
L

)2
]

(8.1.20)

Hence, the energy levels of the trapped electron assume quantized values. This is the char-
acteristic of the wave nature of the electron.

8.1.2 Electron Trapped in a Spherical Box

To obtain different physical insight with different wavefunctions, next, we place the electron
in a spherical box with infinite potential at the wall. We also solve this problem by separation
of variables by letting

ψ (r, θ, φ) = R (r) Θ (θ) Φ (φ) (8.1.21)

1Ways to compute Jn(x) is well documented and is available in programming toolbox like Matlab.
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Figure 8.3: Legendre Polynomial with argument cos θ plotted for l = 5 and different m values.
Notice that as m increases, the z component of the angular increases, and the wavefunction
spirals away from the z axis, due to the centra-fugal force of the electron. Also, the θ variation
of the wavefunction slows down, indicating a lesser component of the angular momentum in
the transverse direction.

Using (8.1.21) in (8.1.4), we have

Θ (θ) Φ (φ) 1
r2

∂
∂r r

2 ∂
∂rR (r) +R (r) Φ (φ) 1

r2 sin θ
∂
∂θ

(
sin θ ∂∂θΘ (θ)

)
+R (r) Θ (θ) 1

r2 sin2 θ
∂2

∂φ2 Φ (φ) + k2
0R (r) Θ (θ) Φ (φ) = 0

(8.1.22)

We propose another eigenvalue problem such that

∂2

∂φ2
Φ (φ) = −m2Φ (φ) (8.1.23)

Using the above in (8.1.22), Φ (φ) can be canceled in the equation. Then we propose another
eigenvalue problem such that

1

sin θ

∂

∂θ
sin θ

∂

∂θ
Θ (θ)− m2

sin2 θ
Θ (θ) = −l (l + 1) Θ (θ) (8.1.24)
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The solution to (8.1.23) is e±imφ while the solution to (8.1.24) is in terms of associated
Legendre polynomials, Pml (x) (named after Adrien-Marie Legendre, 1752-1833), or in terms
of θ,2

Θ (θ) = Pml (cos θ) , −l 6 m 6 l (8.1.25)

Eventually, the equation for R (r) is

1

r2

d

dr
r2 d

dr
R (r) +

[
k2

0 −
l (l + 1)

r2

]
R (r) = 0 (8.1.26)

The last equation is the spherical Bessel equation whose solution is

R (r) = Ajl (k0r) +Bh
(1)
l (k0r) (8.1.27)

In the above, jl (x) represents a spherical Bessel function of order l, which is regular at x = 0,

while h
(1)
l (x) represents a spherical Hankel function of the first kind of order l (named after

Herman Hankel, 1839-1873), which is singular at x = 0.

When we put this solution inside a spherical box, we set B = 0 since h
(1)
l (k0r) is singular

at r = 0. Then the general solution to (8.1.4) inside a box is

ψ(r, θ, φ) = Ajl(k0r)P
m
l (cos θ)e±imφ, −l 6 m 6 l (8.1.28)

Assuming the radius of the sphere is a, to satisfy the boundary condition, we require that

jl(k0a) = 0, (8.1.29)

Since jl(ζlp) = 0, we deduce that k0 = ζlp/a. The first few zeros of the spherical Bessel
functions are given in Table 8.2.

Table 8.2: The first few zeros of the spherical Bessel functions:

p ζ0p ζ1p ζ2p ζ3p ζ4p
1 3.142 4.493 5.763 6.988 8.183
2 6.283 7.725 9.095 10.417 11.705
3 9.425 10.904 12.323 13.698 15.040
4 12.566 14.066 15.515 16.924 18.301

Therefore, the general solution becomes

ψ(r, θ, φ) = Ajl

(
ζlp
r

a

)
Pml (cos θ)e±imφ, −l 6 m 6 l (8.1.30)

In the above, e±imφ represents a traveling wave in the φ direction, Pml (cos θ) represents a
standing wave in the θ direction. When l becomes large, Pml (x) is a higher order polynomial

2The other solution to (8.1.24) is the associate Legendre function of the second kind, Qnl (cos θ) but this
function is singular for 0 6 θ 6 π, and hence, is not admissible as a solution.
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and Pml (cos θ) is a rapidly varying function of θ. In this case, e±imφ, −l 6 m 6 l could also
be a rapidly varying function of φ implying the presence of high angular momentum. From
Figure 8.3, it is seen that the larger m is, the more slowly varying is the associated Legendre
polynomial. The variations from Pml (cos θ) and e±imφ compensate each other for a fixed l so
as to keep the “sum” of the angular momentum a constant when l is fixed.

The function jl(x) is well known and is plotted in Figure 8.1, showing that when n is
large, the centrifugal force of the particle pulls it away from the origin as in the pill-box case
in cylindrical coordinates. From the fact that

k2
0 =

(
ζlp
a

)2

=
2m0E

~2
(8.1.31)

we deduce that the energy levels of the trapped electron are

Elp =
~2

2m0

(
ζlp
a

)2

(8.1.32)

This is again quantized due to the wave nature of the electron.
The above cases illustrate the trapping of an electron by a pill box and a spherical box.

In nature, the positive charge of a nucleus forms a potential that can trap an electron. In
the case of the hydrogen atom, closed form solutions can be obtained for the trapping of
an electron by the Coulomb potential of the positive nucleus. This has been documented in
many quantum mechanics books.

8.2 Mathematics of Angular Momentum
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Figure 8.1: Spherical Bessel function of different order versus its argument. The higher order
functions are smaller around the origin.
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We have shown previously that an electron trapped inside a pill box or a spherical box
does display angular momentum. Next, we derive the operator that is related to angular
momentum. In classical mechanics, the angular momentum is given by

L = r× p (8.2.1)

where p is the linear momentum. Notice that by taking the cross product of p with r, only
the circumferential component of the linear momentum is extracted. Written explicitly, it is

Lx = ypz − zpy, Ly = zpx − xpz, Lz = xpy − ypx (8.2.2)

We raise these to operators, and write them as, in coordinate space representation,

L̂x = −i~
(
y
∂

∂z
− z ∂

∂y

)
, L̂y = −i~

(
z
∂

∂x
− x ∂

∂z

)
, L̂z = −i~

(
x
∂

∂y
− y ∂

∂x

)
, (8.2.3)

x, y, z can be raised to be operators as well, but in coordinate space representation, they are
just scalars. Actually, we can write (8.2.1) as the operator

L̂ = r̂× p̂ (8.2.4)

The hat signs above indicate that they are operators and not unit vectors. The coordinate
space representation of the r̂ operator is just r. The coordinate space representation rep-
resentation of the momentum operator p̂ has been derived before. Consequently, the above
operators can be shown to satisfy the following commutation relations[

L̂x, L̂y

]
= i~L̂z,

[
L̂y, L̂z

]
= i~L̂x,

[
L̂z, L̂x

]
= i~L̂y (8.2.5)

The L̂2 operator is defined as

L̂2 = L̂ · L̂ = L̂2
x + L̂2

y + L̂2
z (8.2.6)

8.2.1 Transforming to Spherical Coordinates

The above can be transformed to spherical coordinate system. To show this, we write (8.2.4)
in coordinate representation yielding 3

L̂ = −i~r×∇ = −i~
(
φ̂
∂

∂θ
− θ̂ 1

sin θ

∂

∂φ

)
(8.2.7)

The last equality can be obtained by writing gradient operator ∇ in spherical coordinates.
Then

L̂x = x̂ · L̂ = −i~
(
x̂ · φ̂ ∂

∂θ
− x̂ · θ̂ 1

sin θ

∂

∂φ

)
(8.2.8)

But x̂ · φ̂ = − sinφ, x̂ · θ̂ = x̂ · ρ̂ cos θ = cosφ cos θ. Then (8.2.8) becomes

L̂x = i~
(

sinφ
∂

∂θ
+ cot θ cosφ

∂

∂φ

)
(8.2.9)

3We will use the x̂, ŷ, ẑ, r̂, θ̂, φ̂ to denote unit vectors in the respective directions.
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Similarly,

L̂y = ŷ · L̂ = −i~
(
ŷ · φ̂ ∂

∂θ
− ŷ · θ̂ 1

sin θ

∂

∂φ

)
(8.2.10)

with ŷ · φ̂ = cosφ, ŷ · θ̂ = sinφ cos θ, we have

L̂y = i~
(
− cosφ

∂

∂θ
+ cot θ cosφ

∂

∂φ

)
(8.2.11)

Similarly,

L̂z = i~ẑ · θ̂ 1

sin θ

∂

∂φ
= −i~ ∂

∂φ
(8.2.12)

The eigenfunction of the L̂z operator is Φ = e±imφ so that

L̂zΦ(φ) = m~Φ(φ) (8.2.13)

For L̂2 operator, we have
L̂2 = −~2(r×∇) · (r×∇) (8.2.14)

Using a vector identity that (a× b) · c = a · b× c, we rewrite the above as

L̂2 = −~2r · ∇ × (r×∇) (8.2.15)

By expressing the ∇× operator in spherical coordinates, and that r×∇ can be expressed as
in (8.2.7), the above becomes

L̂2 = −~2 1

sin θ

(
∂

∂θ
sin θ

∂

∂θ
+

∂

∂φ

1

sin θ

∂

∂φ

)
(8.2.16)

The above is just the circumferential part of the Laplacian operator in (8.1.4). It is quite
easy to show that the above commutes with L̂z. Hence, L̂2 commutes with L̂z. By symmetry,
L̂2 also commutes with L̂x and L̂y.

We can find the eigenfunctions of the L̂2 operator. Traditionally, this eigenfunction and
eigenvalue problem is expressed as

L̂2Ylm(θ, φ) = ~2l(l + 1)Ylm(θ, φ), −l 6 m 6 l (8.2.17)

where l is the orbital angular momentum quantum number and m is the azimuthal angular
momentum quantum number. Its solution is similar to the method of solving for the solution
of Helmholtz wave equation in spherical coordinates. By the separation of variables, the
solution is

Ylm(θ, φ) = CPml (cos θ)eimφ, −l 6 m 6 l (8.2.18)

which can be normalized to yield

Ylm(θ, φ) = (−1)m

√
(2l + 1)(l −m)!

4π(l +m)!
Pml (cos θ)eimφ, −l 6 m 6 l (8.2.19)
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In Hilbert space, this eigenfunction is denoted as |l,m〉. We can define another operator

L̂2
s = L̂2 − L̂2

z = L̂2
x + L̂2

y (8.2.20)

It is quite clear that L̂z commutes with L̂2
s, and L̂2 commutes with L̂2

s. Hence, L̂z, L̂
2
s and

L̂2 are mutually commutative, and share the same eigenfunctions |l,m〉. Therefore,

L̂2
s|l,m〉 = ~2[l(l + 1)−m2]|l,m〉 (8.2.21)

A pictorial illustration of this concept is given in Figure 8.2. It is to be noted that this
picture can be drawn because L̂z, L̂

2
s, and L̂2 are mutually commutative. For the common

eigenfunction |l,m〉, their eigenvalues can be “observed” uniquely and simultaneously.4 The
corresponding increase of Lz and decrease of Ls also correlate with the wavefunctions shown
in Figure 8.3.

However, L̂z does not commute with L̂x or L̂y. Therefore, for an eigenfunction |l,m〉 that

gives the value of 〈L̂z〉 precisely, the value of 〈L̂x〉 〈L̂y〉 are indeterminate. In fact, from the
picture of |Ylm|2, the function is completely indeterminate in the φ direction.

8.3 Field-Atom Interaction–A Simple Introduction

Previously in the section on time-dependent perturbation theory, it was seen that an external
electric field applied to a quantum well can change the potential distribution, and hence,
gives rise to a change or a perturbation of the Hamiltonian. It can be shown that when
electromagnetic field is present, the classical Hamiltonian is

H =
1

2m
(p− qA)2 + qφ (8.3.1)

where A and φ are electric vector and scalar potentials, respectively, and the corresponding
electric field E = −Ȧ − ∇φ, and magnetic field B = ∇ × A. The presence of the electric
potential gives rise to a potential in the Hamiltonian V (r) = qφ(r). In general, V (r) =
V0(r) + qφ(r) where V0(r) could be the Coulomb potential from the nucleus of the atom.
Then the classical Hamiltonian becomes

H =
1

2m
(p− qA)2 + V (r) (8.3.2)

One can expand above squared term to obtain

H =
1

2m
(p2 − 2qp ·A + q2A ·A) + V (r) (8.3.3)

The above can be written as H0 + Hp where H0 is the unperturbed Hamiltonian when the
external field is zero, or

H0 =
1

2m
p2 + V0(r) (8.3.4)

4We are actually drawing the eigenvalues of L̂s =
√
L̂2
x + L̂2

y and L̂ =
√
L̂2
x + L̂2

y + L̂2
z , but they are still

mutually commutative.
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Figure 8.2: A picture showing the angular momentum components, Lz and Ls, for different
tilt angles of the total angular momentum L.

and Hp is the perturbing Hamiltonian given by

Hp =
1

2m
(−2qp ·A + q2A ·A) + qφ (8.3.5)

Notice that Hp = 0 if the field is not turned on. When the field is weak, the quadratic term
A ·A can be ignored, and

Hp ≈ −
q

m
p ·A + qφ (8.3.6)

For the case of light-atom interaction, one can generate a plane-wave light field such that
∇ ·A = 0 with φ = 0. In that case, the above becomes

Hp ≈ −
q

m
p ·A (8.3.7)
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In the quantum world, the the momentum p is elevated to be a momentum operator p̂, and
the corresponding Hamiltonian is

Ĥp ≈ −
q

m
p̂ ·A(t) = − q

m
A(t) · p̂ (8.3.8)

where p̂ = −i~∇ in coordinate space. Moreover, since ∇ ·A = 0, the p̂ operator commutes
with A(r) and therefore the last equality in the above. In the above, we did not elevate A
to be a quantum operator, and had left it as a classical field.5 This is also known as the
semi-classical approximation.

For a plane wave, without loss of generality,

A(t) = A0 cos(k · r− ωt) ≈ A0 cos(ωt) (8.3.9)

The last approximation above follows if the size of the atom is much smaller than the wave-
length in question so that k ·r is a small number. Then above Hamiltonian can be used in the
time-dependent perturbation theory to ascertain the radiative transitions in an atom when it
is excited by a light field.

8.3.1 Magnetic Field and Zeeman Effect

When an atom interacts with a low-frequency or static magnetic field, the vector potential
can be expressed as

A =
1

2
B× r (8.3.10)

It can be shown that, if B is a constant, that ∇ × A = B and ∇ · A = 0 satisfying the
Coulomb gauge. Using the above in (8.3.7), one gets6

Hp ≈ −
q

2m0
B× r · p = − q

2m
B · r× p = − q

2m0
B · L (8.3.11)

Again, in the quantum world, the above can be elevated to be a quantum operator yielding

Ĥp ≈ −
q

2m0
B · L̂ (8.3.12)

For a static or low-frequency magnetic field, the number of photons involved is infinitely or
almost infinitely large. Hence, the graininess of the field is unimportant. For a magnetic field
pointing in the z direction, namely, B = ẑBz,the above becomes

Ĥp ≈ −
q

2m0
BzL̂z (8.3.13)

5The treatment of A as a quantum observable is important when the “graininess” of electromagnetic field
is indispensable, so that the photon picture or the particle picture of electromagnetic field is important. This
is the case when the frequency of the field is high so that ~ω is not trivial, such as in optics, or when the
number of photons involved is a small number.

6Here, m0 is used to denote the mass of the electron to distinguish it from m, the azimuthal angular
momentum quantum number to be introduced later.
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The Hamiltonian is then

Ĥψ(r) = (Ĥ0 + Ĥp)ψ(r) = Eψ(r) (8.3.14)

where Ĥ0 = p̂2

2m0
+ V0. If Ĥ0 is axially symmetric, and since Ĥp ∼ ∂

∂φ , then [Ĥ0, Ĥp] = 0.

Then it is possible that ψ(r) is both the eigenfunction of both Ĥ0 and Ĥp. Therefore,

− q

2m0
BzL̂zψ(r) = − q

2m0
Bzm~ψ(r) (8.3.15)

If the unperturbed Hamiltonian yields eigen-energy E0, then the the perturbed Hamiltonian
yields

E = E0 −
q

2m0
Bzm~ (8.3.16)

The shift in energy level is due to the coupling of the orbital angular momentum to the
perturbing magnetic field. The shift is proportional to the azimuthal angular momentum
quantum number m. In the unperturbed Hamiltonian, these eigenfunctions with different
m’s have the same eigen-energies (eigenvalues), and hence they are degenerate. After the
application of the magnetic field, the eigen-energies split and become non-degenerate. This
is known as the Zeeman effect, named after Pieter Zeeman (1865-1943).

Appendix

A Infinitesimal Translation

From Taylor series expansion, we have

f(x+ a) = f(x) + af(x) +
a2

2!
f2(x) + · · ·

=

[
1 + a

d

dx
+
a2

2!

d2

dx2
+ · · ·

]
f(x)

= ea
d
dx f(x) (A1)

The exponential to an operator is interpreted as a Taylor series when it needs to be evaluated.
The above can be written with a momentum operator (assuming that ~ = 1)

f(x+ a) = eiap̂f(x) (A2)

or in Dirac notation
|fa〉 = eiap̂|f〉 (A3)

where |fa〉 is the state vector representation of the function f(x + a). If a Hamiltonian is
translational invariant, it will commute with the translation operator, namely

Ĥeiap̂|f〉 = eiap̂Ĥ|f〉 (A4)
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or [
eiap̂, Ĥ

]
= 0 (A5)

For example, if the Hamiltonian is such that − 1
2d

2/dx2, then it is quite clear that the left-hand
side of (A4) is

−1

2

d2

dx2
eiap̂f(x) = −1

2

d2

dx2
f(x+ a) = −1

2
f ′′(x+ a) (A6)

The right-hand side of (A4) is

eiap̂
[
−1

2

d2

dx2
f(x)

]
= eiap̂

[
−1

2
f ′′(x)

]
= −1

2
f ′′(x+ a) (A7)

which is the same as the left-hand side.
By assuming that eiap̂ ≈ 1 + iap̂+ · · · , the above also means that

Ĥp̂ = p̂Ĥ, [Ĥ, p̂] = 0 (A8)

This means that p̂ is a constant of motion as shown in Chapter 5, Appendix C, or

d〈p̂〉
dt

= 0 (A9)

In other words, momentum is conserved in a system where the Hamiltonian is translational
invariant.

B Infinitesimal Rotation

Similarly, the Lz operator is −i ∂∂φ which is a generator of rotation,7

f(φ+ α) = eα
d
dφ f(φ) = eiαL̂zf(φ) (B1)

Going through the derivation as we have before, for a Hamiltonian that is rotationally sym-

metric about the z axis, then it commutes with eiαL̂z . In this case

[eiαL̂z , Ĥ] = 0 (B2)

or Taylor series expanding the above, we derive that

[L̂z, Ĥ] = 0 (B3)

Hence, the ẑ component of the angular momentum is conserved for a system that is rotation-
ally symmetric about the z axis.

The above has been motivated by L̂z that follows from the orbital angular momentum,
whose form has been motivated by the classical angular momentum. What if the angular
momentum has no classical analogue like the spin angular momentum? Or the state vector

7Assume again that ~ = 1.
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may not be written using wavefunctions at all. In this case, we can postulate a generalized
generator of rotation of the form

eiαĴz |j〉 (B4)

The above will take the angular momentum state |j〉 and generate rotated state about the z
axis. We postulate the above form for three reasons:

1. The generator of rotation for orbital angular momentum is already of this form. It must
be the special case of the above form.

2. If the above generator commutes with the Hamiltonian with similar rotational symme-
try, this component of angular momentum will be conserved.

3. The rotation will cause the expectation value of the angular momentum vector, an
observable, to rotate according to a coordinate rotation about the z axis.

It is easy to see that the expectation value of the Ĵz operator remains unchanged under
this rotation. We can easily show that

〈j|e−iαĴz ĴzeiαĴz |j〉 = 〈j|Ĵz|j〉 (B5)

In the above, functions of operator Ĵz commute with each other, a fact that can be easily

proved by expanding the functions as a power series. The conjugate transpose of eiαĴz is

e−iαĴz since Ĵz is Hermitian because it represents an observable. Hence, the last equality in
(B5) follows.

C Derivation of Commutation Relations

In general, we can define the angular momentum operator to be

Ĵ = iĴx + jĴy + kĴz (C1)

The above is an observable so are the components of the operator in the x, y, z directions.
Hence, the expectation value of the above with respect to the state |j〉 gives rise to

〈Ĵ〉 = i〈Ĵx〉+ j〈Ĵy〉+ k〈Ĵz〉 = iJx + jJy + kJz = J (C2)

where we denote the expectation values of Ĵi with scalar number Ji, and that of Ĵ with J. We
will test point 3 above with respect to this vector J. This vector will have to rotate according
to coordinate rotation as the state vector is rotated according to (B4).

If eiαĴz is a generator of rotation about the z axis, it will leave Jz unchanged as shown
above. But it will not leave Jx and Jy components unchanged. Now, we can find the expec-

tation value of Ĵx under rotation about z axis, or that

Jx = 〈j|Ĵx|j〉, J ′x = 〈j|e−iαĴz ĴxeiαĴz |j〉 (C3)
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Before rotation, this would have represented the expectation values of the x component of J,
the angular momentum. After rotation,

J = i′J ′x + j′J ′y + kJz (C4)

and J ′x will contain both the x and y component of J. When we rotate the state vector by
angle α, the expectation value of the vector J will rotate by α in the same direction. But
from the Figure C1, it is clear that

J ′x = Jx cosα+ Jy sinα (C5)

The equivalence of rotations in (C3) and (C5) can be proved by lengthy algebra. To simplify
the algebra, we can show the equivalence for infinitesimal rotation. To this end, we assume

that α is small so that we keep only the first two terms of the Taylor expansion for eiαĴz or

eiαĴz ≈ 1 + iαĴz. Then,

J ′x = 〈j|Ĵx − iαĴzĴx + iαĴxĴz + · · · |j〉 (C6)

For small α, (C5) becomes
J ′x
∼= Jx + αJy (C7)

But (C6) can be written as

J ′x = 〈j|Ĵx|j〉 − iα〈j|ĴzĴx − ĴxĴz|j〉 (C8)

Figure C1: Coordinate rotation of the xy plane about the z axis by angle α.

Comparing (C7) and (C8), we have

ĴzĴx − ĴxĴz = iĴy (C9)
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We can let ~ 6= 1 to arrive back at the previously postulated commutator relations. The
above is arrived at using only rotational symmetry argument that the angular momentum
operator is a generator of rotation. The other commutation relations for angular operators
can be derived by similar arguments. In general, for all operators that represent angular
momentum, we have[

Ĵx, Ĵy

]
= i~Ĵz,

[
Ĵy, Ĵz

]
= i~Ĵx,

[
Ĵz, Ĵx

]
= i~Ĵy (C10)

From the above, we can define raising and lowering operators and use the ladder approach to
derive the properties of the eigenstates of angular momentum operators.
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Chapter 9

Spin

9.1 Introduction

Spin is a special property of atomic or subatomic particles that has no classical analogue.
Electron has spin. We can think of it as being due to the self spinning of the electron, but
we should not let our imagination run further than that. Spin of an electron gives it a spin
angular momentum in addition to the orbital angular momentum it possesses. The spin also
endows an electron with a magnetic dipole moment that causes it to interact with a magnetic
field.

The spin of some particles is found to have binary values of “spin up” and “spin down”
experimentally by the famous Stern-Gerlach experiment in 1922 by Otto Stern (1888-1969)
and Walter Gerlach (1889-1979). This binary nature, as we shall see, fits nicely in the math-
ematical structure of angular momentum in quantum mechanics, but it cannot be described
by a wavefunction or wave mechanics. Instead, it can be represented by matrix mechanics.

9.2 Spin Operators

We have seen that the z component of the orbital angular momentum, represented by the
operator L̂z, is quantized to be m~ where −l 6 m 6 l, l being an integer related to the total
angular momentum square operator L̂2 with eigenvalue l (l + 1)~2.

It can be shown that the relationship between the total angular momentum number l and
the z-component of the angular number m is not restricted to orbital angular momenta. It
can be established for all quantum mechanical angular momenta, as is shown in Appendix
A. A generalized angular momentum can be J = L + S, J = L1 + L2, or J = S1 + S2. Like
linear momentum, angular momentum can be added like vectors. Also, they are conserved
quantities. In the quantum world, these observables will be elevated to become operators.

A more general framework for angular momentum is that for Ĵ2 = Ĵ2
x+Ĵ2

y+Ĵ2
z , an operator

that represents the square of the total angular momentum, and Ĵx, Ĵy, Ĵz, operators that
represent the x, y, and z components of angular momenta, then

Ĵ2 |J,M〉 = J (J + 1) ~2 |J,M〉 (9.2.1)

129
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Ĵz |J,M〉 = M~2 |J,M〉 , −J 6M 6 J (9.2.2)

We have proved the above results for orbital angular momentum by using wave mechanics
and wavefunctions, but they can be proven for general angular momentum by using rotational
symmetry of 3D coordinate space, and mathematics of raising and lowering operators (see
Exercise at the end of the Chapter).

Spin angular momentum operators also fit under the framework of general angular mo-
mentum operator, and can be thought of as a special case of the above framework. Hence,
the above can also be applied to spin 1

2 angular momentum where J = 1
2 , − 1

2 6M 6
1
2 . The

values of M has to be spaced by value one apart, hence, M = ± 1
2 .

For spins, we let Ŝ represent the total angular momentum operator, while Ŝz represents
the z component of the spin angular momentum. Applying (9.2.1) and (9.2.2) to spin 1

2
angular momentum, we have

Ŝ2
∣∣ 1

2 ,±
1
2

〉
= 3

4~
2
∣∣ 1

2 ,±
1
2

〉
, J = 1

2 , M = ± 1
2

(9.2.3)

Ŝz
∣∣ 1

2 ,±
1
2

〉
= ± 1

2~
∣∣ 1

2 ,±
1
2

〉
(9.2.4)

As a result, the corresponding z component of the spin angular momentum, represented
by the operator Ŝz, has only two eigenvalues and two eigenstates: an up state with angular
momentum of 1

2~ and a down state with angular momentum of − 1
2~.1

The corresponding x and y components of the spin angular momentum can be represented
by operators Ŝx and Ŝy. Together with Ŝz, they satisfy the following commutation relations,[

Ŝx, Ŝy

]
= i~Ŝz,

[
Ŝy, Ŝz

]
= i~Ŝx,

[
Ŝz, Ŝx

]
= i~Ŝy (9.2.5)

The above is similar to the commutation relations satisfied by L̂x, L̂y, and L̂z, where they
have been motivated by wave mechanics. However, as has been shown in Appendix A, that if
an operator is to represent an angular momentum, then their x, y, and z components have to
satisfy the above commutation relations by rotational symmetry of the 3D coordinate space.

It is expedient at this point to define Pauli spin matrices, introduced by Wolfgang Pauli
(1900-1958), and given by

σ̂x =
2

~
Ŝx, σ̂y =

2

~
Ŝy, σ̂z =

2

~
Ŝz (9.2.6)

with the commutation relation

[σ̂x, σ̂y] = 2iσ̂z, [σ̂y, σ̂z] = 2iσ̂x, [σ̂z, σ̂x] = 2iσ̂y (9.2.7)

Since there are only two spin states, they can be represented by a two dimensional column
vector. Hence, we have

|↑〉 =

[
1
0

]
, |↓〉 =

[
0
1

]
(9.2.8)

1This was discovered in silver atoms by the famous Stern-Gerlach experiment.
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The spin operators can in turn be represented by 2× 2 matrices. Then, the matrix represen-
tation of σ̂z is

σ̂z =

[
1 0
0 −1

]
(9.2.9)

such that

σ̂z |↑〉 = |↑〉 , σ̂z |↓〉 = − |↓〉 (9.2.10)

The raising and lowering Pauli matrices can be easily constructed as

σ̂+ =

[
0 2
0 0

]
, σ̂− =

[
0 0
2 0

]
(9.2.11)

1

2
σ̂+ |↓〉 = |↑〉 , 1

2
σ̂− |↑〉 = |↓〉 (9.2.12)

By using the the relationship that σ̂± = σ̂x ± iσ̂y, the other Pauli matrices can be found to
be

σ̂x =

[
0 1
1 0

]
, σ̂y =

[
0 −i
i 0

]
(9.2.13)

It can be shown that any 2 × 2 matrix can be expanded in terms of the Pauli matrices and
the identity matrix; namely,

A = a1σ̂x + a2σ̂y + a3σ̂z + a4I

Furthermore, it can be shown that

σ̂2
x = σ̂2

y = σ̂2
z = I =

[
1 0
0 1

]
(9.2.14)

Hence, we can define a σ̂2 operator such that

σ̂2 = σ̂2
x + σ̂2

y + σ̂2
z = 3I (9.2.15)

By the same token, the Ŝ2 operator, from (9.2.6) and the above, can be evaluated to be

Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z =

~2

4
σ̂2 =

3

4
~I (9.2.16)

It can be shown that the eigenvector of the σ̂x operator is

|x〉 =
1√
2

[
1
1

]
=

1√
2

[| ↑〉+ | ↓〉]

while that for the σ̂y operator is

|y〉 =
1√
2

[
1
i

]
=

1√
2

[| ↑〉+ i| ↓〉]



132 Quantum Mechanics Made Simple

It indicates that the state vector that represents a spin pointing in the x or y direction is
a linear supposition of an up spin state vector and a down spin state vector with different
phases.

In the above, the quantum mechanics of spin half particle such as an electron is described
by matrix mechanics.

9.3 The Bloch Sphere

We have seen that the eigenstates of σ̂z are

|↑〉 =

[
1
0

]
, |↓〉 =

[
0
1

]
(9.3.1)

In the two dimensional space in which spin states are represented, these two states are or-
thonormal and complete. Hence, the eigenstates of the σ̂x and σ̂y operators can be expanded
as well in terms of |↑〉 and |↓〉 states. Consequently, a general spin state can be written as

|s〉 = a↑ |↑〉+ a↓ |↓〉 = cos

(
θ

2

)
|↑〉+ eiφ sin

(
θ

2

)
|↓〉 (9.3.2)

We have chosen a↑ and a↓ judiciously so that the wavefunction is clearly normalized, namely,
|a↑|2 + |a↓|2 = 1. The relative phase between a↑ and a↓ is in eiφ as absolute phase is
unimportant. Let

σ = ıσ̂x + σ̂y + kσ̂z (9.3.3)

be an operator that represents a vector of the spin angular momentum, where ı, , and k
are unit vectors in the x, y, and z directions. Then the expectation value of this operator
for a given quantum state |s〉 in (9.3.2) should point in a vectorial direction. This is a basic
tenet of quantum mechanics since σ represents angular momentum, which is an observable.
Consequently, we find the vector

Ps = 〈s|σ |s〉 = ı 〈s| σ̂x |s〉+  〈s| σ̂y |s〉+ k 〈s| σ̂z |s〉 (9.3.4)

After substituting |s〉 from (9.3.2) into the above, we can show that

Ps = ı sin θ cosφ+  sin θ sinφ+ k cos θ (9.3.5)

The vector Ps maps out a sphere called the Bloch sphere2 with corresponding θ and φ values
as shown in Figure 9.1.

The above analysis shows that by superposing the up and down spin states judiciously,
the observed spin vector, which is the expectation of the vector spin operator, can be made to
point in any directions in the 3D space. This feature has been of great interest in constructing
a quantum computer and storing quantum information.

2Named after Felix Bloch (1905-1983).
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Figure 9.1: The Bloch sphere showing the vector Ps.

9.4 Spinor

In general, we need a two component vector to describe both the wavefunction and the spin
state of an electron, namely,

|ψ〉 =

[
|ψup〉
|ψdown〉

]
= |ψup〉

[
1
0

]
+ |ψdown〉

[
0
1

]
(9.4.1)

These wave functions with two components are known as spinors. The vector space for
spinors consists of the vector space for the electron wave function multiplying with the two-
dimensional vector space for the spin. This is known as a direct product space.

9.5 Pauli Equation

Before deriving the Pauli equation, it is useful to derive the Hamiltonian for the Zeeman
effect using heuristic arguments. The Zeeman effect is due to the coupling of the magnetic
field to the orbital angular momentum while the Pauli equation accounts of the coupling of
the magnetic field to the spins.

The classical angular momentum of a particle moving in a circle is

L = m0vr (9.5.1)

which can also be written as a vector

L = r× p = r×m0v (9.5.2)
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If this particle is an electron, it will complete an orbit in 2πr/v time, and we can denote the
current due to this orbiting electron as

I = − ev

2πr
(9.5.3)

A circulating current loop produces a magnetic dipole moment

µd = Ia (9.5.4)

where |a| is the area of the current loop, the vector a points in the direction normal to the
surface |a|. For circulating electron, this moment is

|µd| = −
ev

2πr
πr2 = −evr

2
(9.5.5)

We can then write

µd = −er× v

2
= − eL

2m0
(9.5.6)

The interaction energy of a magnetic dipole and a background magnetic field B is given by

Eu = −µd ·B (9.5.7)

Assume that B = ẑBz, then

Eu =
e

2m0
BzLz =

e

2m0
Bzm~ (9.5.8)

since the eigenvalue of L̂z is m~ and the expectation value of L̂z can be precisely m~. Equation
(9.5.8) can also be written as

Eu = mµBBz (9.5.9)

where µB is a Bohr magneton defined to be

µB =
e~

2m0
(9.5.10)

The Hamiltonian of quantum mechanics is inspired by the classical Hamiltonian mechanics.
The Hamiltonian represents the total energy of the system. If an applied external magnetic
field contribution to a small change in the total energy, we can add a perturbation Hamiltonian
in accordance to (9.5.8) and let

Ĥp =
eBz
2m0

L̂z (9.5.11)

Originally, for angular momentum with number l, the z component of the angular momentum
is m~ with (2l + 1) values for m that are degenerate. The applied B field will split this
degeneracy into 2l + 1 distinct energy values. This is known as the Zeeman effect.
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Equation (9.5.11) can be written as

Ĥp =
e

2m0
L̂ ·B (9.5.12)

When the spin angular momentum is added, the perturbing Hamiltonian becomes

Ĥp =
e

2m0
(L̂ + gŜ) ·B (9.5.13)

where g is the g-factor which is approximately 2. It can be determined from Dirac’s equa-
tion, but quantum electrodynamic correction has determined this factor to extraordinary
precision.3

In general, the Hamiltonian for an electron in the presence of a magnetic field is

Ĥ =
1

2m0
p̂2 + V0 +

e

2m0
(L̂ + gŜ) ·B (9.5.14)

The above Hamiltonian is again motivated by the Hamiltonian for classical mechanics for an
electron in the presence of an electromagnetic field, which is

Ĥ =
1

2m0
[p̂ + eA(r)]

2
+ V0(r) +

e

2m0
gŜ ·B (9.5.15)

The above is also known as the Pauli equation. The Hamiltonian of the Pauli equation can
also be expressed as

Ĥ =
1

2m0
(σ̂ · (p̂ + eA))

2
+ V0(r) (9.5.16)

9.5.1 Splitting of Degenerate Energy Level

The interaction of spins with magnetic field can cause the degenerate energy levels of a
quantum system to split. If no magnetic field is present, the spin up state and the spin
down state can share the same wave function with the same energy level, and hence, they are
degenerate. In the presence of a magnetic field, the state where the spin is parallel with the
magnetic field is of lower energy compared to the case where the spin is antiparallel to the
magnetic field. This causes the splitting of a degenerat energy level as shown in Figure 9.1.
This fact can be used to design interesting spin devices.

9.6 Spintronics

Some materials are highly magnetic because there are many unpaired electrons in these ma-
terials. These unpaired electrons give these materials magnetic dipole moments, such as

3In 1985, Richard P. Feynman (1918-1988) wrote in “QED, The Strange Theory of Light and Matter,”
that this factor has been determined to the precision of a few hair lines if one were to err from the travel from
New York to Los Angeles. In 2012, Daniel F. Styer (1955-) wrote that the precision of this constant has been
improved to a few hair lines from the distance of the Earth to the Moon.
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E

B

Eup

Edown

Figure 9.1: The splitting of degenerate energy level when the spin of the electron interacts
with an ambient magnetic field.

ferromagnetic materials. In ferromagnets, the magnetic dipoles of the same orientation clus-
ter together to form microscopic domains that are random on a macroscopic scale. These
domains can be aligned macroscopically by magnetization, making these materials into mag-
nets. Fe, Co, Ni and their alloys have this property.

The conduction property of these materials can also be affected by remnant magnetic
field in the domain, or externally applied magnetic field. This can be explained by the DOS
diagram. The electrons in a magnetic material see a self field that affects their energy levels:
electrons that are aligned with the magnetic field are in the lower energy states compared
to the anti-parallel electrons. Hence the DOS of a ferromagnets is different for up and down
spins compared to normal metals.

E

Ef

DOS

Normal

E

Ef

DOS

Ferromagnetic

DOS DOS

E

Ef

DOSDOS

Ferromagnetic

Figure 9.1: The shifting of the energy levels of the up and down spins states in the DOS plot
due to different ambient or external magnetic field. The left half is for DOS of down spins
and conversely for the right half.

Now, the conduction electrons available for up spins do not exist, but occur in abundance
for the down spins. (The skewness in DOS can be further affected by an externally applied
magnetic field.) This gives rise to conductivity that is spin dependent, or spin polarized
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transport. Also, electrons that pass through a ferromagnets become spin polarized. Devices
of high resistance and low resistance can be made by sandwiching three layers together of a
normal metal between two ferromagnets layers as shown in Figure 9.2. Such phenomenon is
known as giant magneto-resistance (GMR).

Moreover, the external magnetic field can alter the resistance of the device using it to
sense magnetic field or store information in magnetic field. Hence, such devices can be used
as magnetic read head or non-volatile memory as shown in Figure 9.4.

Exercise 2

In the Appendix, we have derived the commutation relation for general angular momentum
in equation (B.3.9). Use the same technique, derive the other commutation relations for
angular momentum in (B.3.10).

1. The raising and lowering operators in angular momentum are defined as

J± = Jx±iJy

Using the commutation relations in (B.3.10), show that

J∓J± = J2
x + J2

y±i[Jx, Jy]

J2 = J2
x + J2

y + J2
z = J∓J± + J2

z±~Jz
[J±, Jz] = ∓~J±

[J2, Jz] = 0

[J2, J±] = 0

The above means that J± shares the same eigenfunctions with J2 but not with Jz.
However, J2 shares the same set of eigenfunctions with Jz.

2. Denoting the eigenfunctions of J2 and Jz as

|J,M〉

where
J2|J,M〉 = J (J + 1) ~2|J,M〉

Jz|J,M〉 = ~M |J,M〉
and J and M are integers. Show that

JzJ±|J,M〉 = ~ (M ± 1) J±|J,M〉

3. By using the fact that
〈J,M |J∓J±|J,M〉 ≥ 0

show that
−J≤M≤J

The wonder of the above is that it could be derived from commutation relations alone,
and the explicit form of |J,M〉 need not be known.
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Figure 9.2: The sandwiching of a normal metal between two ferromagnets can give rise to
high or low resistance depending on their relative orientations (from G.A. Prinz, Science, v.
282, 1660, 1998).
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Figure 9.3: Schematic representations of channel transport that is parallel to the plane of
a layered magnetic metal sandwich structure for aligned (low resistance) and antialigned
(high resistance) orientation. The resistance of the channel can be altered by changing the
magnetization of the sandwiching layers (from G.A. Prinz, Science, v. 282, 1660, 1998).
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Figure 9.4: When a GMR read head passes over magnetic domains of different polarization in
a storage media, the leakage field in between the domains can be detected, as the resistance
of the GMR is affected by such leakage field (Gary A. Prinz, Science v. 282, 1660, 1998).



Chapter 10

Identical Particles∗

10.1 Introduction

The physics of identical particles is another intellectual triumph in quantum mechanics where
the phenomenon is not observed in the classical world. When particles are identical or in-
distinguishable, their wavefunctions have to assume a certain form to satisfy a certain sym-
metry when the positions of the two particles are swapped. In quantum mechanics, it is the
magnitude squared of a wavefunction that has physical meaning. If the particles are indistin-
guishable, the magnitude squared of a wavefunction does not change when the two particles
are swapped.

The many-particle problem cannot be solved in closed form, but we can use a variational
method such as the Rayleigh-Ritz method to find an approximate eigenvalue of the system
as described in Section 6.3.1. To this end, we have to construct basis functions for identical
particles. These basis functions can be constructed from the single-particle solutions when
the particles are non-interacting with and isolated from each other.

First, we can consider the particles to be non-interacting and isolated. If there are two
non-interacting particles, we can write down two independent equations for them, namely

Ĥ1ψa(r1) =

[
− ~2

2m
∇2

1 + V (r1)

]
ψa(r1) = Eaψa(r1) (10.1.1)

Ĥ2ψb(r2) =

[
− ~2

2m
∇2

2 + V (r2)

]
ψb(r2) = Ebψb(r2) (10.1.2)

In the above, the two particles share the same potential function V , but are in different
worlds. Alternatively, we can write down the equation for the entire quantum system which
is the sum of the two quantum systems, namely

(Ĥ1 + Ĥ2)ψa(r1)ψb(r2) = (Ea + Eb)ψa(r1)ψb(r2) (10.1.3)

We use a direct product space consisting of ψa(r1)ψb(r2) to expand the eigenfunction of the
system. This is alright if the particles are non-interacting, but if they are interacting, the

∗This chapter can be skipped on first reading.
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issue of identical particles and their indistinguishability emerges. The wave function has to
be constructed with caution.

In general, we can write the general wavefunction for two particles as

ψtp(r1, r2) = c12ψa(r1)ψb(r2) + c21ψa(r2)ψb(r1) (10.1.4)

where ψη(ri) is a one-particle wavefunction for a particle in state η described by coordinate
ri.

But when r1 
 r2, the assumption is that the magnitude squared of the wavefunction
remains unchanged, since these particles are indistinguishable. Namely,

|ψtp(r1, r2)|2 = |ψtp(r2, r1)|2 (10.1.5)

which means that

ψtp(r1, r2) = γψtp(r2, r1) (10.1.6)

where γ = eiθ. Using (10.1.4) in (10.1.6), we have

c12ψa(r1)ψb(r2) + c21ψa(r2)ψb(r1) = γ [c12ψa(r2)ψb(r1) + c21ψa(r1)ψb(r2)] (10.1.7)

From the above, we get

c21 = γc12, c12 = γc21 (10.1.8)

Consequently,

c12 = γc21 = γ2c12 (10.1.9)

or γ2 = 1, γ = ±1, c21 = ±c12, and

ψtp(r1, r2) = c12 [ψa(r1)ψb(r2)± ψa(r2)ψb(r1)] (10.1.10)

When the “+” sign is chosen in (10.1.10), it corresponds to the wavefunction of two identical
bosons. When the “−” sign is chosen, it corresponds to the wavefunction of two identical
fermions.

10.2 Pauli Exclusion Principle

For fermions, the two-particle wavefunction is given by

ψtp(r1, r2) = c [ψa(r1)ψb(r2)− ψa(r2)ψb(r1)] (10.2.1)

when a = b, the above vanishes, meaning that two fermions cannot be in the same state.
The above vanishes when r1 = r2, meaning that two fermions cannot be in the same position
simultaneously. This known as the Pauli exclusion principle. No two identical electrons can
be in the same state nor the same position simultaneously. However, two electrons with
different spins, up spin and down spin, are considered different, and they can be in the same
state, like in the same orbital in an atom. Also, the sign of the total wavefunction, ψtp(r1, r2),
changes sign when the positions of the two particles are swapped.
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10.3 Exchange Energy

When we have two electrons, each will see the Coulomb potential of the other electron. Hence,
the Hamiltonian is given by

Ĥ = − ~2

2me

(
∇2

1 +∇2
2 + V1 + V2

)
+

e2

4πε0 |r1 − r2|
= Ĥ1 + Ĥ2 +

e2

4πε0 |r1 − r2|
(10.3.1)

where V1 = V (r1), V2 = V (r2) and ∇2
i is the Laplacian operator expressed in the i-th

coordinate. The two particles are in the same environment and their wavefunctions can
overlap. The two-particle fermion wavefunction can be written as

|ψtp〉 =
1√
2

[|1, a〉 |2, b〉 − |2, a〉 |1, b〉] (10.3.2)

where 1√
2

ensures that |ψtp〉 is also normalized. In the above, |i, η〉 is the Hilbert space

representation of the wavefunction ψη(ri). The above does not solve the Schrödinger equation
corresponding to the above Hamiltonian, but it can be used to estimate the eigenvalue or the
energy of the Hamiltonian in the spirit of the variational method described previously, using
the Rayleigh quotient.

To find the corresponding expectation value of the energy, we evaluate

〈E〉 = 〈ψtp| Ĥ |ψtp〉 (10.3.3)

Since the function is normalized, the above is also the Rayleigh quotient for the energy. When
expanded to four terms, gives

〈E〉 =
1

2

[
〈1, a| 〈2, b| Ĥ |1, a〉 |2, b〉+ 〈2, a| 〈1, b| Ĥ |2, a〉 |1, b〉

− 〈1, a| 〈2, b| Ĥ |2, a〉 |1, b〉 − 〈2, a| 〈1, b| Ĥ |1, a〉 |2, b〉
]

(10.3.4)

The first two terms above are equal to each other. Specifically,

〈1, a| 〈2, b| Ĥ |1, a〉 |2, b〉
= 〈1, a| 〈2, b| Ĥ1 |1, a〉 |2, b〉+ 〈1, a| 〈2, b| Ĥ2 |1, a〉 |2, b〉

+ 〈1, a| 〈2, b| e2

4πε0 |r1 − r2|
|1, a〉 |2, b〉

= 〈1, a| Ĥ1 |1, a〉+ 〈2, b| Ĥ2 |2, b〉

+ 〈1, a| 〈2, b| e2

4πε0 |r1 − r2|
|1, a〉 |2, b〉

= Ea + Eb + EIE,ab (10.3.5)

Ea is the energy of particle 1 in state a, while Eb is the energy of particle 2 in state b. The
EIE,ab term is the interaction energy that can be derived explicitly to yield

EIE,ab = e2

∫
drdr′′

|ψa (r)|2 |ψb (r′)|2

4πε0 |r− r′|
(10.3.6)
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This is exactly the same as the potential energy from the second term on the right-hand side
of (10.3.4) if we were to write it explicitly. Consequently, we have

Ea + Eb + EIE,ab =
1

2

[
〈1, a| 〈2, b| Ĥ |1, a〉 |2, b〉+ 〈2, a| 〈1, b| Ĥ |2, a〉 |1, b〉

]
(10.3.7)

However, the third and fourth terms on the right-hand side of (10.3.4) have no classical analog.
They are there because of the presence of the second term in (10.1.10) be it for bosons or
fermions. The second term is needed because the particles are indistinguishable or identical
if we exchange their positions.

Due to the Hermiticity of the Hamiltonian operator, the fourth term on the right-hand
side of (10.3.4) is the complex conjugate of the third term. Consequently, these two terms
can be written as

EEX,ab = −1

2

[
〈1, a| 〈2, b| Ĥ |2, a〉 |1, b〉+

(
〈1, a| 〈2, b| Ĥ |2, a〉 |1, b〉

)∗]
(10.3.8)

= −<e
[∫

drdr′ψ∗a (r)ψ∗b (r′) Ĥψa (r′)ψb (r)

]
(10.3.9)

The exchange energy is proportional to the overlap between the wavefunctions ψa (r) and
ψb (r). This term is non-zero even if the Coulomb interaction is absent, but the wave-
functions overlap and are non-orthogonal. When their wavefunctions overlap, the issue of
indistinguishability arises, and the exchange term can be non-zero even for non-interacting
particles.

10.4 Extension to More Than Two Particles

In the following, we will discuss methods to construct basis functions for different kinds of
particles. These basis functions does not solve the Schrödinger equation yet, but they have
to satisfy certain symmetry conditions depending on the kind of particles they represent.
The basis functions can be used in the Rayleigh-Ritz procedure to estimate the energy of the
system. We can use the eigenstates of the isolated particles to construct basis functions.

1. Non-identical Particle Case:

Let us assume that we have N particles, and M modes to fit this N particles. We can
construct a state for non-identical particles that looks like

|ψdiff〉 = |1, a〉 |2, b〉 |3, c〉 ... |N,n〉 (10.4.1)

In terms of basis function, we may express the above as

|ψab···n〉 = |1, a〉|2, b〉|3, c〉 · · · |N,n〉 (10.4.2)

or
ψab···n(r1, r2, · · · , rN ) = ψa(r1)ψb(r2) · · ·ψn(rN ) (10.4.3)

We can fit the N particles in M modes, and these M modes can be repeating or non-
repeating. In other words, a, b, c, . . . , n are chosen from M eigenstates with energy
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values E1, E2, E3, . . . , EM with possibility of repetition. For non-repeating case, it is
necessary for M > N .

However, the above wavefunction cannot be used for bosons and fermions, as we will
get a new wavefunction when we swap the positions of two particles. But bosons and
fermions are indistinguishable particles. We will consider them separately.

2. Boson Case:

For the N boson particle case, we can write the legitimate wavefunction, which can be
used as a basis function, as

|ψidentical-bosons〉 ∝
∑
P̂

P̂ |1, a〉|2, b〉|3, c〉 · · · |N,n〉 (10.4.4)

where P̂ is a permutation operator, and the above summation is over all possible permu-
tations of the coordinate ri over the one-particle eigenstates a, b, c, · · · , n. Repetition
of these energy eigenstates is allowed since more than one particle can be placed in
one energy state. The above wavefunction remains unchange when we permute the
positions of two particles, because for every |1, a〉 · · · |i, l〉 · · · |j, p〉 · · · |N,n〉, there is a
|1, a〉 · · · |j, l〉 · · · |i, p〉 · · · |N,n〉 in the above summation. Hence, swapping of i and j will
not change the sign of the above wavefunction. The above can also be written as a basis
function as

|ψab···n〉 ∝
∑
P̂

P̂ |1, a〉|2, b〉|3, c〉 · · · |N,n〉 (10.4.5)

3. Fermion Case:

For the N fermion case, we can write the wavefunction, which can be used as a basis
function, as

|ψidentical-fermion〉 =
1√
N !

N !∑
P̂=1

±P̂ |1, a〉|2, b〉|3, c〉 · · · |N,n〉 (10.4.6)

where the “+” sign is chosen for even permutation while the “−” sign is chosen for odd
permutation. A permutation involves a unique pairwise exchange of two particles . The
permutation is even or odd depending on the number of pairwise exchanges that have
taken place.

Therefore, given a term |1, a〉 · · · |i, l〉 · · · |j, p〉 · · · |N,n〉, there always exists another term:
−|1, a〉 · · · |j, l〉 · · · |i, p〉 · · · |N,n〉 in the above summation since they differ by one per-
mutation. If i = j, implying that ri = rj , the two terms cancel each other implying
that they cannot be in the same position. Likewise all the terms in the sum cancel each
other since every term that contains i and j can be paired up with every other terms in
the sum. Moreover, If l = p, all terms in the summation above cancel as well implying
that they cannot be in the same mode or state. Therefore, the above is a legitimate
basis function that represents the fermions as it obeys Pauli exclusion principle. Also,
there is a sign change when the position of two particles are swapped.
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Another way of writing the fermion case is

|ψidentical-fermion〉 =
1√
N !

∣∣∣∣∣∣∣∣∣
|1, a〉 |2, a〉 · · · |N, a〉
|1, b〉 |2, b〉 · · · |N, b〉)

...
...

. . .
...

|1, n〉 |2, n〉 · · · |N,n〉

∣∣∣∣∣∣∣∣∣ (10.4.7)

The above is known as the Slater determinant. When two particles are in the same
position, two columns are the same, and the above determinant is zero. When two states
are the same, two rows are the same, and the determinant of the above is again zero,
implying that these two cases are not allowed. Also when two columns are swapped,
the sign of the determinant changes, because it corresponds to two particles exchanging
positions. In terms of basis function, we can express the above as

|ψab···n〉 =
1√
N !

N !∑
P̂=1

±P̂ |1, a〉|2, b〉|3, c〉 · · · |N,n〉

=
1√
N !

∣∣∣∣∣∣∣∣∣
|1, a〉 |2, a〉 · · · |N, a〉
|1, b〉 |2, b〉 · · · |N, b〉)

...
...

. . .
...

|1, n〉 |2, n〉 · · · |N,n〉

∣∣∣∣∣∣∣∣∣ (10.4.8)

10.5 Counting the Number of Basis States

Usually, the one particle eigenfucntion has infinitely many possible states. In the finite basis
method, we may want to choose a subset of this eigenstates, say M states. At this point, if
we have N particles and M states to put this N particles in, it may be prudent to count how
many possible basis states there are. Such counting scheme will also be used in the appendix
to derive the thermal distribution functions.

1. Non-identical Particles:

The first particle has M state to choose from in (10.4.2), the second particle also has M
states to choose from, and eventually, there are MN states possible for (10.4.2), since
repetition of the states is allowed.

Nbasis = MN (10.5.1)

2. Identical Bosons:

In this case, the number of particles that can be put into one state is not limited. Since
we need to permute the state (10.4.2) to arrive at new states to be linear superposed in
the manner of (10.4.5), the ordering of the particles within the states is not important.

We will first derive the number of permutations when ordering is important. One can
imaging the M states to be equivalent to M bins. The first particle has M possible
bins to fit into. However, once the particle is put into one of the bins, since ordering
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is important, repetition is allowed, there are two ways to put in the second particle in
the same bin, before or after the first particle. In other words, the first particle splits
the bin into two compartments, allowing two ways to put two particles in the same bin.
Together with the other M − 1 bins, there are M + 1 ways to insert the second particle
into the bins. In other words, adding a new particle always adds a new compartment
for the next particle to fit in. By the same token, the third particle has M + 2 ways to
fit into the bins etc. Finally the number of possible ways is

M(M + 1)(M + 2)...(M +N − 1) (10.5.2)

One can verify that the above gives the correct answer of N ! if only one bin is available
for N particles. Since ordering is unimportant, we have

Nbasis =
(M +N − 1)!

N !(M − 1)!
(10.5.3)

3. Identical Fermions:

For fermions, the first particle has M states to choose from. Since each state can only
admit one fermion particle, it is necessary that M ≥ N . The second particle has M − 1
states to choose from, since repetition is not allowed. Also, ordering is not important
since all permutations are used in the summation (10.4.8). Consequently,

Nbasis =
M !

N !(M −N)!
(10.5.4)

10.6 Examples

1. Non-identical Particles:

Say if we have two electrons with different spins, the distinct states are

|1, a〉|2, a〉, |1, b〉|2, b〉, |1, a〉|2, b〉, |1, b〉|2, a〉 (10.6.1)

The above is in agreement with M = 2, N = 2, MN = 22 = 4.

2. Identical Bosons:

Consider the 4He (helium four) atoms which are bosons. Then the possible boson states
are

|1, a〉|2, a〉, |1, b〉|2, b〉, 1√
2

(|1, a〉|2, b〉+ |1, b〉|2, a〉) (10.6.2)

Again this is in agreement with M = 2, N = 2, (M+N−1)!
N !(M−1)! = 3!

2!1! = 3.

3. Identical Fermions:

If we have two identical fermions, the only state is

1√
2

(|1, a〉|2, b〉 − |1, b〉|2, a〉) (10.6.3)

Again this is in agreement with M = 2, N = 2, M !
N !(M−N)! = 2!

2!0! = 1.
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In the above simple examples, we see that for the boson case, there are more states with
particles in the same state compared to the other cases. In the boson case, there are two out
of three states where the particles are in the same state (see (10.6.2)). In the non-identical
particle case, there are two out of four such states. In the fermion case, there is none. This
is indicative of the fact that bosons like to cluster together.

10.7 Thermal Distribution Functions

There are some important thermal distribution functions in understanding semiconductor
physics. These are the Maxwell-Boltzmann distribution, the Fermi-Dirac distribution, and the
Bose-Einstein distribution. These distribution functions are derived via statistical mechanics,
and the results will just quoted here. The first-principles derivations are given in Appendix
10.7.

1. Maxwell-Boltzmann Distribution:

For this distribution, the number of particles N(E) in a given energy state is given by

N(E) = e
−(E−µ)
kBT (10.7.1)

where µ is the chemical potential, kB is the Boltzmann constant, and T is temperature
in Kelvin.

2. Fermi-Dirac Distribution:

This is given by

N(E) =
1

1 + e
E−µ
kBT

(10.7.2)

This is the most important distribution function for semiconductors. The chemical
potential µ is loosely called the Fermi level. To be precise, µ is the same as the Fermi
level at absolute zero temperature. When T is zero, the distribution function looks like
as shown in Figure 10.1. The electrons are frozen into the ground state for E < µ.
When T > 0, some of the electrons from the states where E < µ are dislodged by
thermal agitation into states where E > µ. This phenomenon is more pronounced as T
increases. This distribution also explains the physical character of semiconductors.

In semiconductors, the Fermi level is midway in between the valence band and the
conduction band. When T = 0, all the electrons are frozen in the valence band, and the
semiconductor cannot conduct electricity, as there are no free electrons in the conduction
band. When T > 0, some electrons in the valence band are dislodged into the conduction
band. This gives rise to electrons in the conduction band, and holes in the valence band.
They contribute to the flow of electric current and the semiconductor starts to conduct.
The conductivity of the semi-conductor material increases with increasing temperature.

3. Bose-Einstein Distribution:
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Figure 10.1: Fermi-Dirac Distribution for changing temperature T .

The Bose-Einstein distribution is for bosons, and it is given by

N(E) =
1

e(E−µ)/(kBT ) − 1
(10.7.3)

This distribution has a divergence when E = µ. It also reflects the fact that bosons
like to cluster together. When the temperature is low, they condense to around the
chemical potential µ.
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Figure 10.2: Comparison of different thermal distribution functions. For high energy states,
they are similar to each other (from DAB Miller).
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Appendix

A Quantum Statistical Mechanics

We would like to derive Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein distributions.
It is based on statistical mechanics that assumes that all identical energy levels have equal
likelihood of being occupied. Only the counting is based on quantum mechanics.

We consider a quantum system with energy levels E1, E2, E3, · · · . Each level Ei could
have degeneracy of di, i = 1, 2, 3, · · · , and is filled by Ni, i = 1, 2, 3, · · · particles. When
the system is coupled to its environment, energy will be exchanged with its environment via
collision, vibration, and radiation. At thermal equilibrium, there is no net energy flowing into
and out of the system. We expect that

E =

∞∑
n=1

EnNn (A1)

to be a constant due to energy conservation. Also we expect the number of particles to remain
constant, or that

N =

∞∑
n=1

Nn (A2)

due to particle conservation.

The particles will acquire energy from their environment due to energy exchange, and dis-
tribute themselves across the energy levels subject to the above constraints, but also according
to the availability of energy levels. Energy levels with higher degeneracies are more likely to
be filled. We will consider three different cases: (i) when the particles are distinguishable, (ii)
when they are identical fermions, and (iii) when they are identical bosons.

A1 Distinguishable Particles

We will find the configuration function Q(N1, N2, N3, · · · ) whose value equals the number of
ways that there are N1 particles in E1, N2 particles in E2, N3 particles in E3 and so on. In
order to fill energy level E1 with N1 particles, the number of ways is(

N
N1

)
=

N !

N1! (N −N1)!
(A3)

If E1 has degeneracy d1, all the degenerate levels are equally likely to be filled. Then there
are dN1

1 ways that the N1 particles can go into E1 level (see Section 10.5). Hence, the number
of ways that E1 can be filled is

QE1
=

N !dN1
1

N1! (N −N1)!
(A4)
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En dn, Nn 

E3 d3, N3 

E2 d2, N2 

E1 d1, N1 

Figure A1: Particles are distributed among different energy levels according to quantum
statistics. An energy level is denoted with Ei with degeneracy di and Ni particles occupying
it.

The number of ways that E2 can be filled is

QE2 =
(N −N1)!dN2

2

N2! (N −N1 −N2)!
(A5)

Then the total number of ways

Q(N1, N2, N3, · · · ) = QE1QE2QE3 · · ·

=
N !dN1

1

N1! (N −N1)!

(N −N1)!dN2
2

N2! (N −N1 −N2)!

(N −N1 −N2)!dN3
3

N3! (N −N1 −N2 −N3)!
· · ·

= N !
dN1

1 dN2
2 dN3

3 · · ·
N1!N2!N3! · · ·

= N !

∞∏
n=1

dNnn
Nn!

(A6)

Notice that the above is independent of the order in which the levels are filled, as expected.
The above can also be interpreted in a different light: There are dNnn ways that Nn particles
can fit into the En energy level. But order is unimportant and a division by Nn! is necessary.
But there are N ! ways that these distinguishable particles can be selected in an ordered way,
and hence, a prefactor of N ! is needed in the above.
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A2 Identical Fermions

Due to Pauli exclusion principle, each energy level can admit only one particle. In this case,
the number of ways energy En can be filled is (see Section 10.5)

QEn =
dn!

Nn! (dn −Nn)!
, dn ≥ Nn (A7)

(The above has value 1 when dn = 1.) The total number of ways is then

Q (N1, N2, N3, ...) =
∞∏
n=1

dn!

Nn! (dn −Nn)!
(A8)

A3 Identical Bosons

For bosons, repetition for filling a given state is allowed, but the particles are indistinguishable
from each other. Then when Nn particles are picked to fill the dn degenerate En levels, the
first particle from Nn particles has dn slots to fill in, while the second particle has dn+1 slots
to fill in, and the third particle has dn+ 2 slots to fill in and so on, since repetition is allowed.
That is the new particle can take the position of the old particle as well. So the number of
ways that En with dn degeneracy can be filled is (see Section 10.5)

QEn =
dn (dn + 1) (dn + 2) ... (dn +Nn − 1)

Nn!
(A9)

=
(Nn + dn − 1)!

Nn! (dn − 1)!
(A10)

Therefore

Q (N1, N2, N3, ...) =
∞∏
n=1

(Nn + dn − 1)!

Nn! (dn − 1)!
(A11)

Unlike the distinguishable particle case, no prefactor of N ! is needed for the identical
particle case, since the order with which they are selected is unimportant.

B Most Probable Configuration

A way of filling the energy levels {E1, E2, E3, ...} with {N1, N2, N3, ...} is called a configura-
tion. The most likely configuration to be filled is the one with the largest Q (N1, N2, N3, ...).
At statistical equilibrium, the system will gravitate toward this configuration. Hence, to find
this configuration, we need to maximize Q with respect to different {N1, N2, N3, ...} subject
to the energy conservation constraint (A1) and particle conservation constraint (A2).

We use the Lagrange multiplier technique to find the optimal Q subject to constraints
(A1) and (A2). We define a function

G = lnQ+ α

[
N −

∞∑
n=1

Nn

]
+ β

[
E −

∞∑
n=1

NnEn

]
(B1)
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The optimal Q value is obtained by solving

∂G
∂Nn

= 0, n = 1, 2, 3, · · · , ∂G
∂α =

[
N −

∞∑
n=1

Nn

]
= 0, ∂G

∂β =

[
E −

∞∑
n=1

NnEn

]
= 0 (B2)

Notice that the constraint conditions for particle and energy conservations are imposed in the
second and third equations above.

B1 Distinguishable Particles

In this case,

G = lnN ! +
∞∑
n=1

[Nn ln dn − lnNn!] (B3)

+ α

[
N −

∞∑
n=1

Nn

]
+ β

[
E −

∞∑
n=1

NnEn

]
(B4)

We use Stirling’s formula that

ln (z!) ≈ z ln z − z (B5)

Consequently,

G =
∞∑
n=1

[Nn ln dn −Nn lnNn +Nn − αNn − βEnNn] (B6)

+ lnN ! + αN + βE (B7)

From the above
∂G

∂Nn
= ln dn − lnNn − α− βEn = 0 (B8)

As a result, we have

Nn = dne
−(α+βEn) (B9)

The above is the precursor to the Maxwell-Boltzmann distribution from first principles.

B2 Identical Fermions

In this case

G =

∞∑
n=1

[ln(dn!)− ln(Nn!)− ln((dn −Nn)!)] (B10)

+ α

[
N −

∞∑
n=1

Nn

]
+ β

[
E −

∞∑
n=1

NnEn

]
(B11)
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After applying Stirling’s formula to Nn dependent terms, we have

G =

∞∑
n=1

[ln dn!−Nn lnNn +Nn − (dn −Nn) ln(dn −Nn) + (dn −Nn)− αNn − βNnEn]

(B12)

+ αN + βE (B13)

From the above,

∂G

∂Nn
= − lnNn + ln(dn −Nn)− α− βEn = 0 (B14)

or

Nn =
dn

1 + eα+βEn
(B15)

In the above derivation, we have assumed that dn is large so that Nn is large since Nn ≤ dn
in (A7). The above is the precursor to the Fermi-Dirac distribution.

B3 Identical Bosons

In this case

G =

∞∑
n=1

[ln((Nn + dn − 1)!)− ln(Nn!)− ln((dn − 1)!)] (B16)

+ α

[
N −

∞∑
n=1

Nn

]
+ β

[
E −

∞∑
n=1

NnEn

]
(B17)

With Stirling’s approximation to the Nn dependent terms,

G =

∞∑
n=1

[(Nn + dn − 1) ln(Nn + dn − 1)− (Nn + dn − 1)−Nn lnNn +Nn (B18)

− ln((dn − 1)!)− αNn − βNnEn] + αN + βE (B19)

Then

∂G

∂Nn
= ln(Nn + dn − 1)− ln(Nn)− α− βEn = 0 (B20)

yielding

Nn =
dn − 1

eα+βEn − 1
' dn
eα+βEn − 1

(B21)

where we assume that dn � 1. The above is the precursor to the Bose-Einstein distribution.
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C The Meaning of α and β

We will apply the above to a simple quantum system in order to infer what α and β should
be. To find them, we need to solve the constraint equations (A1) and (A2) that follow from
the optimization of (B1). To this end, we need to find the degeneracy per energy state, dk of
a quantum system.

We consider N electrons inside a bulk material describable by a single electron in an
effective mass approximation. In such a case, the kinetic energy of the electron is described
by

Ek =
~2k2

2m
(C1)

If we assume periodic boundary conditions on a box of lengths Lx, Ly, and Lz, then

k2 =

(
2nxπ

Lx

)2

+

(
2nyπ

Ly

)2

+

(
2nzπ

Lz

)2

(C2)

In the k space, there is a state associated with a unit box of volume

∆Vk =
(2π)3

LxLyLz
=

8π3

V
(C3)

where V is the volume of the box of bulk material. In k space, in a spherical shell of thickness
∆k, the number of states in the neighborhood of k is

dk =
4πk2∆k

∆Vk
=

V

2π2
k2∆k (C4)

Then the total number of particles is, using (B9) for Maxwell-Boltzmann,

N =
∑
k

dke
−(α+βEk) =

V

2π2
e−α

∑
k

k2∆ke−βEk

=
V

2π2
e−α

∫ ∞
0

e−β~
2k2/(2m)k2dk (C5)

By using the fact that

I1 =

∫ ∞
0

e−Ak
2

k2dk = − d

dA

∫ ∞
0

e−Ak
2

dk = − d

dA

1

2

√
π

A
=

√
π

4
A−

3
2 (C6)

the above integrates to

N = V e−α
(

m

2πβ~2

) 3
2

(C7)

Similarly, the total E is given by

E =
∑
k

EkNk =
∑
k

Ekdke
−(α+βEk) = − d

dβ

∑
k

dke
−(α+βEk) = − d

dβ
N(β) (C8)
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It can be shown that

E =
3N

2β

From the equipartition theorem of energy from statistical mechanics we know that

E

N
=

3

2
kBT (C9)

Hence, we conclude that

β =
1

kBT
(C10)

It is customary to write

α = −µ(T )

kBT
(C11)

so that for Maxwell-Boltzmann distribution,

Nn = dne
−(En−µ)/(kBT ) (C12)

where µ(T ) is the chemical potential. When normalized with respect to degeneracy, we have

nmb = e−(En−µ)/(kBT ), Maxwell-Boltzmann (C13)

Fermi-Dirac and Bose-Einstein distribution become Maxwell-Boltzmann when (βEn +
α)� 1. So they have the same α and β. Therefore,

nfd =
1

e(En−µ)/(kBT ) + 1
, Fermi-Dirac (C14)

nbe =
1

e(En−µ)/(kBT ) − 1
, Bose-Einstein (C15)

When (En − µ) � kBT the above distributions resemble the Maxwell-Boltzmann distri-
bution. This is because n becomes small per energy level, and the indistinguishability of
the particles plays a less important role. When (En − µ) < 0, the Fermi-Dirac distribution
“freezes” to 1 for all energy levels below µ, since the Pauli exclusion principle only allows
one fermion per level. When (En − µ) � kBT , the Bose-Einstein distribution diverges, im-
plying that the particles condense to an energy level close to µ. This condensation is more
pronounced if kBT is small.

For photons in a box, the number of photons need not be conserved as photons can freely
the box than entering the box. Hence, we can set α or µ, the chemical potential, to zero. In
this case, the Bose-Einstein distribution becomes the Planck distribution.

npl =
1

eEn/(kBT ) − 1
, Planck (C16)
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Chapter 11

Density Matrix

11.1 Pure and Mixed States

Given a quantum state described by

|ψ〉 = a1|ψ1〉+ a2|ψ2〉 (11.1.1)

which is a linear superposition of two states, the interpretation of quantum mechanics is that
the particle is in a linear superposition of the two states, and one does not know what state
the particle is in until the measurement is done. The measurement collapses the particle into
one of the two quantum states. For instance, the two states could be the spin states of an
atom. The famous Stern-Gerlach experiment separates the spin states into the up state and
the down state. Such a state indicated in (11.1.1) is known as a pure quantum state. The
phase relationship between a1 and a2 is maintained precisely. When the quantum state is in
such a state, we say that the two states are coherent.

The above interpretation of quantum mechanics is known as the Copenhagen school of
thought, lead by Niels Bohr. The probabilistic interpretation of quantum mechanics was
fraught with controversies in its early days. Many physicists, including Einstein, cannot bring
themselves to term with it. “God does not play dice!” was one famous saying of Einstein. He
posited that “a quantum system is already in a known state before the measurement” with
the hidden variable description. However, experimental findings are with the Copenhagen
school for coherent quantum states. For incoherent quantum states, they are with Einstein’s
position.

Nevertheless, it is difficult for a particle to be in a pure quantum state if it involves a linear
superposition of many quantum states unless the quantum system is completely isolated.
Coupling to the thermal bath can destroy the coherence between these states. Hence, there
are states for which partial coherence still exists, and the linear superposition of quantum
states de-coheres with respect to each other, before the linear superposition of states becomes
entirely a mixed state. Coherence lifetime is used to measure when a linear superposition of
quantum states, which starts out being a coherent sum, becomes an incoherent superposition.

However, there are states where the particle has already collapsed into state 1 or state 2
even before the measurement. Or these two states are entirely uncorrelated or incoherent.
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The particle is either in state 1 or state 2. The probability of finding the particle in state 1 is
|a1|2 while that for state 2 is |a2|2. The phase relationship between a1 and a2 is completely
random or incoherent. States for which there is no coherence between a1 and a2 are known
as mixed states. If we take an ensemble average of the measurement outcomes of the mixed
states, they satisfy the aforementioned probability property.

The probabilistic interpretation of quantum mechanics cannot be verified by a single
experiment, but an ensemble of measurements whose setups are identical to each other. An
ensemble average∗ of an experimental outcome is the average over these outcomes over the
identical ensemble of measurements. It will be prudent to find a way to describe a quantum
system that is related to its ensemble average and its experimental outcome.

11.2 Density Operator

An elegant way to represent a quantum state that is either in the pure state, mixed state, or
partial coherent state, is via the density operator

ρ̂ = |ψ〉〈ψ| (11.2.1)

We can easily show that the expectation of the operator Â in this state is

〈Â〉 = 〈ψ|Â|ψ〉 = tr
(
Âρ̂
)

(11.2.2)

This has been shown in Section 5.2.3. Therefore, knowing the density operator is equivalent
to knowing the quantum state of a system which is denoted by state |ψ〉. We can calculate the
trace of an operator in terms of the sum of the diagonal elements of its matrix representation.
Hence,

tr
(
Âρ̂
)

=
∑
n

〈φn|Âρ̂|φn〉 (11.2.3)

We show that the above is basis independent by inserting the identity operator Î =
∑
m |φm〉〈φm|

twice in (11.2.2), to yield

〈ψ|Â|ψ〉 =
∑
n,m

〈ψ|φn〉〈φn|Â|φm〉〈φm|ψ〉 (11.2.4)

Since the factors in the summand are scalars, we can rearrange them to give

〈ψ|Â|ψ〉 =
∑
n,m

〈φm|ψ〉〈ψ|φn〉〈φn|Â|φm〉 =
∑
n,m

ρmnAnm = tr
(
ρ ·A

)
(11.2.5)

where ρmn is the matrix representation of ρ̂ while Anm is the matrix representation of Â.
The above is clearly independent of the orthonormal basis we choose.

∗An ensemble average of a random variable is the average of the variable over its different outcomes for
the same system or identical systems.
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Say if we start with (11.1.1) for a quantum state, using it in (11.2.1) will yield

ρ̂ = |a1|2|ψ1〉〈ψ1|+ |a2|2|ψ2〉〈ψ2|+ a1a
∗
2|ψ1〉〈ψ2|+ a2a

∗
1|ψ2〉〈ψ1| (11.2.6)

Notice that only relative phases between a1 and a2 are needed to form the above. Absolute
phase has no meaning in quantum mechanics.

For a mixed state, we assume that the off diagonal terms involving a∗1a2 and a∗2a1 will
either time average or ensemble average to zero since they are incoherent.† Hence, we suppose
that

ρ̂ = |a1|2|ψ1〉〈ψ1|+ |a2|2|ψ2〉〈ψ2|
= p1|ψ1〉〈ψ1|+ p2|ψ2〉〈ψ2| (11.2.7)

The form (11.2.7) can be thought of as having been ensemble averaged or time averaged. For
a general mixed state we can further write the density operator as

ρ̂ =
∑
j

pj |ψj〉〈ψj | (11.2.8)

where |ψj〉 are pure quantum states but not necessarily stationary states nor orthogonal, and
pj is the probability of finding the quantum system in state |ψj〉. Hence,

∑
j pj = 1.

When we find the expectation value of an operator Â with a mixed state, it can be thought
of as having been ensemble averaged. For example,

〈Â〉 = tr(Âρ̂) =
∑
j

pjtr(Â|ψj〉〈ψj |)

=
∑
j

pj〈ψj |Â|ψj〉 (11.2.9)

The trace of the matrix representation of an operator is independent of the basis states
chosen to represent the operator as explained in Chapter 5. It will be interesting to see how
the density operator changes under the change of basis state. To this end, we let

|ψj〉 =
∑
n

c(j)n (t)|φn〉 (11.2.10)

When the quantum state is a function of time, but the relevant operator is time independent,
this picture is known as the Schrödinger picture of quantum mechanics. The basis state |φn〉
however, can be time independent. Using this in (11.2.8), we have

ρ̂ =
∑
j

pj
∑
n,m

c(j)n |φn〉〈φm|(c(j)m )∗

=
∑
n,m

|φn〉〈φm|
∑
j

pjc
(j)
n (c(j)m )∗ (11.2.11)

†Statistical processes whose time average and ensemble average are equivalent to each other are known as
ergodic processes.
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We can find the uv element of the matrix representation of ρ̂ as

ρuv = 〈φu|ρ̂|φv〉 =
∑
j

pjc
(j)
u [c(j)v ]∗ = cuc∗v (11.2.12)

where the overbar stands for ensemble average. From the above, it is quite clear that

ρuv = ρ∗vu (11.2.13)

or that the density matrix is Hermitian. The Hermiticity property of the density operator is
obvious from (11.1.1) and (11.2.8). Furthermore,

tr (ρ̂) =
∑
u

ρuu =
∑
j

pj
∑
u

|c(j)u |2 =
∑
j

pj = 1 (11.2.14)

The second last equality follows from the normality of |ψj〉 in (11.2.10). Since a trace of an
operator is independent of the basis state in which it is represented, the trace of the density
operator is defined as

tr(ρ̂) =
∑
u

〈φu|ρ̂|φu〉 (11.2.15)

where φu constitutes an orthonormal basis.
For a pure quantum state,

ρ̂2 = |ψ〉〈ψ|ψ〉〈ψ| = |ψ〉〈ψ| = ρ̂ (11.2.16)

Therefore,

tr(ρ̂2) = tr(ρ̂) = 1 (11.2.17)

The trace of the above is 1 is obviated by setting Â to 1 in Equation (11.2.2). The above
shows that the trace of a density operator is always one irrespective of it is for a pure-state
or a mixed-state quantum system. But this is not true for the trace of the ρ̂2 operator.

For a mixed state

ρ̂2 =
∑
i

∑
j

pipj |ψi〉〈ψi|ψj〉〈ψj | (11.2.18)

Taking the trace of the above, we have

tr(ρ̂2) =
∑
n

〈φn|ρ̂2|φn〉 =
∑
n

∑
i

∑
j

pipj〈φn|ψi〉〈ψi|ψj〉〈ψj |φn〉

=
∑
i

∑
j

pipj |〈ψi|ψj〉|2 ≤
∑
i

∑
j

pipj =

(∑
i

pi

)2

= 1 (11.2.19)

In the above, we did not assume that |ψj〉 are orthogonal, but they are normalized. The
inequality follows from that |〈ψi|ψj〉|2 ≤ 1. Hence, the trace of the density operator has the
property that

tr(ρ̂2) < 1, mixed state (11.2.20)

tr(ρ̂2) = 1, pure state (11.2.21)
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11.3 Time Evolution of the Matrix Element of an Oper-
ator

The matrix representation of an operator is given by

Amn(t) = 〈ψm(t)|Â|ψn(t)〉 (11.3.1)

Taking the time derivative of the above, assuming that Â is time independent, we have

∂tAmn(t) = {∂t〈ψm(t)|}Â|ψn(t)〉+ 〈ψm(t)|Â∂t|ψn(t)〉 (11.3.2)

Now, using the fact that

i~∂t|ψm(t)〉 = Ĥ|ψm(t)〉, i~∂t〈ψm(t)| = 〈ψm(t)|Ĥ (11.3.3)

we have

∂tAmn(t) =
i

~
〈ψm(t)|ĤÂ|ψn(t)〉 − i

~
〈ψm(t)|ÂĤ|ψn(t)〉

=
i

~
〈ψm(t)|ĤÂ− ÂĤ|ψn(t)〉 (11.3.4)

or

i~∂tAmn(t) = (ÂĤ − ĤÂ)mn =
[
Â, Ĥ

]
mn

(11.3.5)

The algebra above applies to the expectation value of Â as well, as shown in Chapter 5, where

〈Â〉 = 〈ψ(t)|Â|ψ(t)〉 (11.3.6)

and

i~∂t〈Â〉 = 〈ÂĤ − ĤÂ〉 =
〈[
Â, Ĥ

]〉
(11.3.7)

In other words, if Â commutes with Ĥ, its expectation value is time independent. In the
above derivation, we have assumed that Â is independent of time, but the functions ψm(t)
are functions of time. This is known as the Schrodinger picture in quantum mechanics.

The time evolution of the density operator can be derived, similar to the time evolution
of the expectation value of an operator. However, the density operator is in general time
dependent, whereas operators considered previously are time independent; and hence, the
derivation is slightly different. Given

ρ̂ = |ψ〉〈ψ| (11.3.8)

then

∂tρ̂ = (∂t|ψ〉)〈ψ|+ |ψ〉∂t〈ψ| (11.3.9)
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Using (11.3.3), we have

∂tρ̂ = − i
~
Ĥ|ψ〉〈ψ|+ i

~
|ψ〉〈ψ|Ĥ =

i

~

[
ρ̂Ĥ − Ĥρ̂

]
=
i

~

[
ρ̂, Ĥ

]
(11.3.10)

There is a sign difference between (11.3.7) and (11.3.10). The above holds if ρ̂ is in a mixed
state as well

ρ̂ =
∑
j

pj |ψj〉〈ψj | (11.3.11)

This follows from the linearity of the above equations and that pj is time-independent.
Equation (11.3.10) can be easily generalized to matrix elements when the basis functions

used for seeking the matrix representation are from time-independent basis. Or the matrix
representation of (11.3.10) can be directly derived. Then,

∂tρmn =
i

~

[
ρ̂Ĥ − Ĥρ̂

]
mn

=
i

~

[
ρ̂, Ĥ

]
mn

(11.3.12)

where Amn(t) = 〈φm|Â(t)|φn〉, and φm is from a time-independent basis. By inserting identity
operator defined using the same basis set, we can convert the above into wholly a matrix form:

∂tρ =
i

~
[
ρ,H

]
(11.3.13)

where ρ and H are the matrix representations of ρ̂ and Ĥ, respectively. We often do not
distinguished the matrix representations ρ and H, and operator representations ρ̂ and Ĥ, as
mathematically, they are the same. The above equation replaces the Schrödinger equation as
the equation of motion for the quantum system.

11.4 Two-Level Quantum Systems

Two-level systems are encountered in nuclear magnetic resonance when the spin states of
a particle interact with a magnetic field. They can also be used to study the Josephson
junction effect in superconductive devices. Many more complex systems, for simplicity, can
be approximated by a two-level system. When an electric field (optical field) interacts with
an atom and causes an atomic transition between two energy levels, while the other energy
levels are far away, the system can be approximated by a simpler two-level system. Also,
approximate two-level systems are often used to represent the value “0” and “1” in quantum
computing as we shall see later. One can start with Schrödinger equation which is the equation
of motion for a quantum system:

i~∂t|ψ〉 = Ĥ|ψ〉 (11.4.1)

By making a finite basis approximation, where the state function is approximated by

|ψ〉 = a1(t)|ψ1〉+ a2(t)|ψ2〉 (11.4.2)



Density Matrix 165

where |ψ1〉 and |ψ2〉 are time independent. Then one can show the equation of motion can be
approximated by a much smaller system. A simple two-level system can be described with
something that resembles coupled-mode equation;

i~∂ta1(t) = E1a1(t) +Ka2(t) (11.4.3)

i~∂ta2(t) = E2a2(t) +Ka1(t) (11.4.4)

where if K = 0, the two states will be stationary states evolving independently of each other.
When K 6= 0, their time evolution will be different evolving according to the coupled-mode
equation. We will discuss how to find K.

11.4.1 Interaction of Light with Two-Level Systems

For an optical system, one assumes that before it is perturbed, the atom (or quantum well)
is described by a simple two-level system with two stationary states bearing energies E1 and
E2. The unperturbed Hamiltonian can be described by

Ĥ0 =

[
E1 0
0 E2

]
(11.4.5)

In the above, we assume that the Hamiltonian operator and its matrix representation are
the same. In this case, the perturbing Hamiltonian due to an electric field pointing in the z
direction with strength Ez is assumed to be‡

Ĥp = ezEz = −Ezµ̂ (11.4.6)

where µ̂ = −eẑ.§ The matrix representation of the dipole moment in terms of two stationary
states before perturbation is given by¶

µmn = −e〈ψm|ẑ|ψn〉 (11.4.7)

where ẑ is the position operator, and(
Ĥp

)
mn

= Hp,mn = −Ezµmn (11.4.8)

In the above µ11 = µ22 = 0, so are Hp11 = Hp22 = 0, because ψm and ψn have different
parities. In other words, if one of them has odd parity, the other one has even parity. Then
in the coordinate representation, the function |ψi|2z will have odd parity, and its integral
evaluates to zero. But for the off diagonal elements, the integrands will have even parity,
and their integrals evaluate to nonzero values. The matrix elements above are formed with

‡This can be derived using the length gauge (see Gerry and Knight, Introductory Quantum Optics, p. 76).
§The coordinate representation of ẑ is just z.
¶This is an approximation since after perturbation, the quantum state is not necessarily describable by just

two stationary states. We saw that in the time-dependent perturbation theory, all eigenstates of the system
was necessary to approximate the perturbed system.
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stationary states, and µ12 can be made pure real so that µ12 = µ21 = µd. Hence, the
perturbing Hamiltonian becomes

Ĥp =

[
0 −Ezµd

−Ezµd 0

]
(11.4.9)

The above can be simplified to, and approximated by a two-level system with the use of
simple matrix mechanics. This is also very much in the spirit of a finite-basis method or
reduced-basis method, where a small number of basis can form a good approximation of the
quantum system. The unperturbed Hamiltonian, Ĥ0 is assumed to have eigenvalues E1 and
E2 with respect to these two stationary states. The total Hamiltonian is then

Ĥ = Ĥ0 + Ĥp =

[
E1 −Ezµd
−Ezµd E2

]
(11.4.10)

The equation of motion according to Schrödinger equation is

i~∂t|ψ〉 = Ĥ|ψ〉 (11.4.11)

In the above, the perturbing Hamiltonian introduces the off diagonal terms which are the
cross-coupling terms in coupled-mode theory. They are responsible for causing the transition
of eigenstates between state 1 and state 2. If the off diagonal terms are absent, the stationary
states will remain in their respective states without transition. In the above finite basis
approximation to the Hamiltonian, the basis used consists of the two eigenstates of the original
unperturbed problem. This is also a subspace approximation method, whereby an infinite
dimensional Hilbert space has been replaced by a two-dimensional subspace.

The density matrix which is the matrix representation of the density operator is‖

ρ̂ =

[
ρ11 ρ12

ρ21 ρ22

]
(11.4.12)

Equation (11.2.6) expresses the density operator as operator. But by finding its matrix
representation in terms of the two states assuming that they are orthonormal, the density
matrix is

ρ̂ =

[
|a1(t)|2 a1(t)a∗2(t)
a2(t)a∗1(t) |a2(t)|2

]
(11.4.13)

In (11.2.6), we assume here that the two states are stationary states (they need not be),
and the time variations of the states have been put into a1(t) and a2(t). Hence, the off
diagonal terms can be rapidly varying functions of time due to the interference between the
two stationary states.

Next, we derive the equation of motion for the density matrix. Since

dρ̂

dt
=
i

~

[
ρ̂Ĥ − Ĥρ̂

]
=
i

~

([
ρ11 ρ12

ρ21 ρ22

] [
E1 −Ezµd
−Ezµd E2

]
−
[

E1 −Ezµd
−Ezµd E2

] [
ρ11 ρ12

ρ21 ρ22

])
=
i

~

[
−Ezµd(ρ12 − ρ21) −Ezµd(ρ11 − ρ22) + (E2 − E1)ρ12

−Ezµd(ρ22 − ρ11) + (E1 − E2)ρ21 −Ezµd(ρ21 − ρ12)

]
(11.4.14)

‖Again, we ignore the difference between operator and its matrix representation and use the same notation.
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From the above

dρ21

dt
=
i

~
[(ρ11 − ρ22)Ezµd − (E2 − E1)ρ21] = −iω21ρ21 + i

µdE

~
∆ρ (11.4.15)

where ~ω21 = E2−E1 is the same as the resonant frequency of the two-level system according
to the Fermi’s golden rule, and ∆ρ = ρ11−ρ22 where ∆ρ is the proportional to the population
difference between the two states. We need not write down the equation for ρ12 since ρ12 =
ρ∗21.

From (11.4.14)

dρ11

dt
= − i

~
Ezµd(ρ12 − ρ21),

dρ22

dt
= − i

~
Ezµd(ρ21 − ρ12) (11.4.16)

From them, we get

d∆ρ

dt
=

d

dt
(ρ11 − ρ22) = − i

~
Ezµd(ρ12 − ρ21 − ρ21 + ρ12) =

2i

~
Ezµd(ρ21 − ρ∗21)

=
−4

~
Ezµd=m(ρ21) (11.4.17)

since ρ12 = ρ∗21.

The density matrix method can be used to describe an ensemble of identical atoms. In
this case, we implicitly assume that the density matrix has been ensemble averaged. If this
system models an ensemble of identical atoms, ∆ρ is proportional to the population difference
of atoms in states 1 and 2. The above equations, (11.4.15) and (11.4.17), form two coupled
equations from which the unknowns, ∆ρ = ρ11 − ρ22 and ρ12 can be solved for.

It is noted that if no external field is applied, there is no change of the population densities
in the two states. Moreover, if the external field is switched off, then (11.4.15) evolves in time
according to exp(−iω21t). Since these are stationary states, their phase relationship for an
ideal quantum system remains locked in this manner. The driving term, the last term in
(11.4.15), due to the electric field being on will cause it to veer away from this phase-locked
relationship.

At his point, we are going to add phenomenological terms to the above equations to make
them agree with experimental observations. The above two level system, so far, has been
isolated from a thermal bath or interaction with other atoms. It more aptly describes the two
level system of a single atom in isolation. In actuality, there will be a collection of atoms that
will be similarly excited by the electric field. These atoms will be coupled to other thermal
sources such as by collision with other atoms or with the wall of the container.

As mentioned before, the density matrix can be used to represent the ensemble averaged
state of the collection of these atoms. Here, for a collection of atoms, ρ11−ρ22 is the fractional
population difference in electrons of the atoms between state 1 and state 2. But when coupled
to a thermal bath, there will be some electrons excited to level 2 even in the absence of an
external electric field. Hence, we modify (11.4.17) to account for the coupling to a thermal
bath to become

d

dt
∆ρ =

2i

~
Ezµd (ρ21 − ρ∗21)− ∆ρ−∆ρo

T1
(11.4.18)
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where ∆ρo = (ρ11 − ρ22)o is the quiescent steady state value of ∆ρ in the absence of external
driving field. The transient value ∆ρ is assumed to relax to the quiescent value ∆ρo in time
T1. The last term above is added phenomenologically in order to match experimental data.

Also, ρ21 = C e−iω21t in the absence of external driving field and if we have a pure quantum
state which is a linear supposition of two quantum states in quantum coherence, or in locked
phase with respect to each other. But if the two level system is coupled to an external heat
bath, the phase coherence between the two energy states will be lost and average to zero. We
can describe this by adding a term to (11.4.15) to account for dephasing, or

dρ21

dt
= −iω21ρ21 + i

µd
~
Ez ∆ρ− ρ21

T2
(11.4.19)

T2 is the dephasing time which is usually shorter than T1. The first term on the right-hand
side of the above gives rise to a resonant solution if the other terms are absent. The second
term is a driving term due to the presence of the electric field and the population difference
between states 1 and 2. The last term is an attenuation due to the decoherence between the
two quantum states. If the two states are entirely incoherent or uncorrelated, ρ21 = 0. The
above implies that if the exciting field Ez is zero, the coherence between the two states will
eventually become zero or lost due to dephasing and coupling to a thermal bath (noise bath).

At this point, it is prudent to discuss the role of the exciting field, which is of the form

Ez (t) = Eo cosωt =
Eo
2

[
eiωt + e−iωt

]
(11.4.20)

When ∆ρ is slowly varying in (11.4.19), the driving term, which is the second term on the
right-hand side in (11.4.19) has two rotating signals eiωt and e−iωt. The response, ρ21 will have
two rotating signals as well. Hence, ρ21 = C1 e

−iωt+C2 e
iωt when driven by a sinusoidal source

(11.4.20). In the above, (11.4.19) has a resonant frequency in the vicinity of ω21. If ω ≈ ω21,
then C1 � C2 because C1 corresponds to the amplitude of the resonance solution which
becomes very large under sinusoidal excitation at a frequency close to resonance. Therefore,
we define

ρ21 (t) eiωt = C1 + C2e
2iωt ≈ C1 = β21 (t) (11.4.21)

where C1 is slowly varying so that β21 (t) is slowly varying when we ignore the rapid term.
Using this in (11.4.18) and making us of (11.4.20), and keeping only the slowly varying terms,
we have

d

dt
∆ρ =

i

~
Eoµd (β21 − β∗12)− ∆ρ−∆ρo

T1
(11.4.22)

In the above, we have kept only the slowest varying term of the first term on the right-hand
side. The rapid term is assumed to only result in a small response in ∆ρ. This is known as
the rotating wave approximation.

From (11.4.20), we deduce that

dρ21 (t)

dt
=

[
d

dt
β21 (t)

]
e−iωt − iωβ21 (t) e−iωt (11.4.23)

Consequently, (11.4.19) becomes

d

dt
β21 = i ∆ω β21 + i

µdEo
2~

∆ρ− β21

T2
(11.4.24)
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where ∆ω = ω − ω21, and we have kept only the slowly varying terms.
In steady state, d∆ρ/dt = 0 in (11.4.22), or ∆ρ → ∆ρo in (11.4.24), or it is a constant.

Hence, (11.4.24) has a particular solution and a homogeneous solution. The homogeneous
solution is transient and will die out in the steady-state limit. The particular solution is
driven by a constant term, and hence, is a constant of time. Therefore, β21 must tend to a
constant in steady state with dβ21/dt = 0.

Next, the steady state solution of the above equations can be sought. Defining Ω =
µdEo/ (2~), where Eo is the electric field amplitude, we have from (11.4.24) and (11.4.22)
that

0 = i∆ωβ21 + iΩ∆ρ− β21/T2 (11.4.25)

0 = −4Ω=m (β21)− (∆ρ−∆ρo) /T1 (11.4.26)

Taking the real and imaginary parts of (11.4.25), we arrive at

0 = −∆ω=m (β21)−<e (β21) /T2 (11.4.27)

0 = ∆ω<e (β21) + Ω∆ρ−=m (β21) /T2 (11.4.28)

Equations (11.4.26)-(11.4.28) constitute three equations with three unknowns ∆ρ, =m (β21),
<e (β21), from which they can be solved for. Therefore, in the steady state,

∆ρ = ∆ρo
1 + ∆ω2T 2

2

1 + ∆ω2T 2
2 + 4Ω2T1T2

(11.4.29)

<e (β21) = − ∆ωΩT 2
2 ∆ρo

1 + ∆ω2T 2
2 + 4Ω2T1T2

(11.4.30)

=m (β21) = − ΩT2∆ρo
1 + ∆ω2T 2

2 + 4Ω2T1T2
(11.4.31)

If there are N atoms, then we define

∆N = N∆ρ, ∆No = N∆ρo (11.4.32)

and

∆N = ∆No
1 + ∆ω2T 2

2

1 + ∆ω2T 2
2 + 4Ω2T1T2

(11.4.33)

We would eventually like to use the above calculation to ascertain the effect of the electric
field on the ensemble of atoms. The result is to polarize each atom yielding a dipole moment
producing a polarization current. To this end, we will find the dipole moment produced. The
expectation value of the dipole moment is

〈µ̂〉 = tr(ρ̂µ̂) (11.4.34)

where

ρ̂µ̂ =

[
ρ11 ρ12

ρ21 ρ22

] [
0 µd
µd 0

]
=

[
ρ12µd ρ11µd
ρ22µd ρ21µd

]
(11.4.35)
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Hence

〈µ̂〉 = µd(ρ12 + ρ21) = 2µd<e(ρ12) (11.4.36)

because ρ12 = ρ∗21.
After making the rotating wave approximation that ρ12

.
= β12e

iωt, ρ21
.
= β21e

−iωt we
arrive at

〈µ̂〉 = µd (ρ12 + ρ21)
.
= µd

(
β12e

iωt + β21e
−iωt) (11.4.37)

after using (11.4.21). Also, 〈µ̂〉 has to be a measurable, observable, real-valued quantity, and
that is what the above shows. Therefore,

〈µ̂〉 = 2µd [<e (β21) cosωt+ =m (β21) sinωt] (11.4.38)

since β21 = β∗12. In general, it is not in phase with the exciting electric field, having in-phase
and quadrature components.

In electromagnetics, it is customary to write a relationship in the frequency domain using
phasors, or we have

P̃ = εoχ̃Ẽ (11.4.39)

where Ã indicates thatA is a phasor quantity, and P̃ , χ̃, and Ẽ are their phasor representations
in frequency domain. The corresponding relationhsip in the time domain is

P (t) = <e
[
εo (χ′ + iχ′′)Eoe

−iωt]
= εo (χ′ cosωt+ χ′′ sinωt)Eo (11.4.40)

But also, from the above calculation using density matrix method,

P (t) = N 〈µ̂〉 (11.4.41)

From (11.4.38), we have

P (t) = 2Nµd [<e (β21) cosωt+ =m (β21) sinωt] (11.4.42)

Comparing (11.4.40) and (11.4.42), we have

χ′ =
2Nµd
εoEo

<e (β21)

= −µ
2
dT2∆No
εo~

∆ωT2

1 + (∆ω)
2
T 2

2 + 4Ω2T1T2

(11.4.43)

χ′′ =
2Nµd
εoEo

=m (β21)

=
µ2
dT2∆No
εo~

1

1 + (∆ω)
2
T 2

2 + 4Ω2T1T2

(11.4.44)
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where Ω is proportional to the strength of the externally applied electric field. When the
applied electric field is small, we can ignore the 4Ω2T1T2 term to get

χ′ (ω) =
µ2
dT2∆No
εo~

(ω21 − ω)T2

1 + (ω − ω21)
2
T 2

2

(11.4.45)

χ′′ (ω) =
µ2
dT2∆No
εo~

1

1 + (ω − ω21)
2
T 2

2

(11.4.46)

Figure 11.1: Plots of χ′ and χ′′ according to (11.4.45) and (11.4.46) (from DAB Miller).

Note that in this analysis, the perturbing field need not be small. The approximation we
have made is the two-state approximation. This is a decent approximation if the other eigen-
states are far away from these two states in terms of energy levels. The other approximation
is the rotating wave approximation which is good if the exciting frequency of the electric field
is high and is much faster than the relaxation times T1 and T2, and that it is close to ω21.

Since this analysis is not a small perturbation analysis, Ω above, which is proportional to
the exciting electric field, can be large. When it is large, we note from (11.4.29) and (11.4.33)
that the fractional population difference approaches zero, or that ρ11 = ρ22. In this case, the
absorption transition is equal to the stimulated emission. From (11.4.44), when ∆ω = 0, or
ω = ω21 we can express the denominator as

1 + 4Ω2T1T2 = 1 +
I

Is
(11.4.47)

where I is the field intensity, and Is is the saturation intensity, since I is proportional to the
square of the electric field. The saturation intensity is defined to be the intensity at which
the absorption peak of χ′′ will drop to half of its value compared to the weak excitation case
where I is very small.

Equations (11.4.22) and (11.4.24) are also known as the optical Bloch equations. These
equations were first used to analyze another two-state system, the nuclear magnetic resonance
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system. With a magnetic field pointing in the z direction, when the nuclear spins are pointing
upward and aligned with the magnetic field, they are in the lower energy state. However,
when they are pointing anti-parallel to the magnetic field, they are in a higher energy state.
RF (radio frequency) field can be used to flip the spin states, and similar equations as above
can be derived to describe the spin dynamics.

Exercise 3

A Josephson junction can also be described by a two-level quantum system where a Cooper
pair (quasi-particle) is trapped on either side of a thin insulating junction. The Hamilton
operator of the system can be described by

Ĥ =

[
E1 K
K E2

]
(11.4.48)

where E1 and E2 are the potential energy at the bottom of the conduction band, according
to the effective mass theory for such quasi-particle. By connecting the two regions of the
superconductor to a voltage source, a difference in the potential energy between the regions
can be created, yielding E2−E1 = −qV where q = −2e for Cooper pairs, and V is the voltage
of the source.

 

Use the two-level quantum system theory, where

ρ11 = |a1|2, ρ22 = |a2|2, ρ12 = a1a
∗
2 = |a1||a2|ei(θ1−θ2) = ρ∗21 (11.4.49)

Show that

ρ12 =
√
ρ11ρ22e

−iδ (11.4.50)

where δ = θ2 − θ1. Next show that the current flow through the Josephson junction is equal
to

J =
dρ11

dt
=

2K

~
√
ρ11ρ22 sin δ (11.4.51)
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Hence, the current flow between the two regions is proportional to the sine of the phase
difference between the wave functions of the two regions. Furthermore, show that

d

dt

√
ρ11ρ22 = 0 (11.4.52)

and that
d(ρ12 + ρ21)

dt
= iω21(ρ12 − ρ21) (11.4.53)

From the above, show that the phase difference can be affected by the applied voltage, and
that the rate of change of the phase difference is given by

δ̇ = −(E2 − E1)/~ = qV/~ (11.4.54)

Deduce that

δ(t) = δ0 +
q

~

∫ t

0

V (t′)dt′ (11.4.55)

If
V = V0 + v cos(ωt) (11.4.56)

then
δ(t) = δ0 +

q

~
V0t+

q

~
v

ω
sin(ωt) (11.4.57)

Since ~ is small, the above gives rise to rapidly varying phases, and the associated current
cannot be measured, or averages to zero. Using

sin(x+ ∆x) ≈ sin(x) + ∆x cos(x) (11.4.58)

Show that the current is now

J≈J0[sin(δ0 +
q

~
V0t) +

q

~
v

ω
sin(ωt) cos(δ0 +

q

~
V0t)] (11.4.59)

Explain how you would pick the frequency ω so that a measurable DC current ensues.
Because of the sensitivity of the Josephson junction to an applied EMF, it can be used

to sense magnetic field in a SQUID (superconducting quantum interference detector). The
magnetic field through the ring in the above figure generates a difference in the EMF and
therefore, a phase difference on the two arms of the ring superconductor with Josephson
junctions in them. The interference pattern of the output current is very sensitive to the
magnetic field, and hence, can be used to detect small field differences.
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Chapter 12

Quantization of Classical Fields

12.1 Introduction

The quantum harmonic oscillator is extremely important for the quantization of classical
fields, be it electromagnetic, acoustic, or elastic in nature. Classical fields can be thought of
as due to a set of coupled classical harmonic oscillators. In the case of electromagnetics field,
these classical harmonic oscillators are dipoles in space polarized by the electric field. In the
case of acoustic or elastic field, they are due to coupled atomic or molecular vibrations in a
medium. Many experimental evidence suggest that there are photon particles associated with
electromagnetic field, and phonon particles associated with vibrations of atoms or molecules
in crystalline solids.

When the classical harmonic oscillators are replaced by quantum harmonic oscillators,
the classical field becomes quantized as shall be seen. The energy that can propagate and
associated with the field is quantized, as in the case of the quantum harmonic oscillator. In
classical electromagnetics when we calculate energy, e.g. as stored energies

We =
1

2
ε |E|2 , Wh =

1

2
µ |H|2 (12.1.1)

we think of We and Wh as a continuum, capable of assuming all values from zero to a large
value. Also, the power flow by a plane wave

S =
1

2η0
|E|2 (12.1.2)

assumes continuous values in classical electromagnetics. As shall be shown, this cannot be
the case if the electromagnetic field is due to a set of coupled quantum harmonic oscillators.
The energy carried by a plane wave is also quantized corresponding to packets of energy.

The quantized nature of electromagnetic radiation has been observed historically. This
was first suggested for explaining black-body radiation and deriving the Planck’s radiation law
in 1900. Later, it was used by Einstein to explain experimental findings in the photoelectric
effect. From the experimental data, it was deduced that the packet of energy associated with

175
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electromagnetic field is

Ephoton = ~ω (12.1.3)

This quantized energy is very small when ω is small but sizeable in the optical regime. The
grainy nature of electromagnetic field is unimportant at radio frequency (RF), and microwave
frequencies, but is important at optical frequencies. We shall show that this is the case when
the electromagnetic field is quantized when the classical harmonic oscillators are replaced by
quantum harmonic oscillators.

To introduce the quantized nature of electromagnetic field, one way is to regard the field
in a resonant cavity or a box with periodic boundary condition. The electromagnetic field
in such a system oscillates harmonically. We can replace the classical harmonic oscillators
associated with such a system with the quantum harmonic oscillator; and hence, quantize the
amplitude and the associated energy of the electromagnetic field.

We will first revisit the quantum harmonic oscillator because of its importance here. Next
we study the wave on a linear atomic chain, first as a classical wave, and then as a set of
coupled quantum harmonic oscillators. Then we study the quantization of electromagnetic
wave field along similar spirit.

12.2 The Quantum Harmonic Oscillator Revisited

The governing equation for the quantum harmonic oscillator is

Ĥψ =

(
− ~2

2m

d2

dq2
+

1

2
mω2q2

)
ψ = Eψ (12.2.1)

where q has been used to denote the displacement from the mean of this simple harmonic
oscillator. We divide the above by ~ω to make the operator and the eigenvalue dimensionless.
Letting ξ =

√
mω
~ q, a dimensionless quantity, the above becomes

1

2

(
− d2

dξ2
+ ξ2

)
ψ =

E

~ω
ψ (12.2.2)

The above looks almost like A2 −B2 with the exception that operators are involved instead
of scalars. One can show that

1√
2

(
− d

dξ
+ ξ

)
1√
2

(
d

dξ
+ ξ

)
=

1

2

(
− d2

dξ2
+ ξ2

)
− 1

2

(
d

dξ
ξ − ξ d

dξ

)
(12.2.3)

Furthermore, it can be easily shown that(
d

dξ
ξ − ξ d

dξ

)
= Î (12.2.4)

Hence,

1

2

(
− d2

dξ2
+ ξ2

)
=

1√
2

(
− d

dξ
+ ξ

)
1√
2

(
d

dξ
+ ξ

)
+

1

2
(12.2.5)
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We define

â† =
1√
2

(
− d

dξ
+ ξ

)
, creation or raising operator (12.2.6)

â =
1√
2

(
d

dξ
+ ξ

)
, annihilation or lowering operator (12.2.7)

It can easily be shown by integration by parts that â† is in fact the conjugate transpose
operator of â.

Consequently, from (12.2.1) and (12.2.2), we have(
â†â+

1

2

)
ψ =

E

~ω
ψ (12.2.8)

and

Ĥ = ~ω
(
â†â+

1

2

)
(12.2.9)

Since

En =

(
n+

1

2

)
~ω (12.2.10)

from our previous knowledge, we conclude that

â†â |ψn〉 = n |ψn〉 (12.2.11)

In other words, if |ψn〉 is an eigenstate of (12.2.1) or (12.2.8), the above must be true. We
define a number operator

n̂ = â†â (12.2.12)

such that
n̂ |ψn〉 = n |ψn〉 (12.2.13)

One can also show by direct substitution using (12.2.6) and (12.2.7) that[
â, â†

]
= ââ† − â†â = Î (12.2.14)

One can easily show, using the commutation relation, that

â†ââ |ψn〉 =
(
ââ† − 1

)
â |ψn〉 = â

(
â†â− 1

)
|ψn〉 = (n− 1) â |ψn〉 (12.2.15)

Therefore
â |ψn〉 = An |ψn−1〉 (12.2.16)

Hence, â is a lowering operator. Similarly, using the commutation relation,

â†ââ† |ψn〉 = â†
(
1 + â†â

)
|ψn〉 = (n+ 1) â† |ψn〉 (12.2.17)

Therefore
â† |ψn〉 = Bn+1 |ψn+1〉 (12.2.18)
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Hence, â† is a raising operator. Testing (12.2.16) with 〈ψn−1|, and (12.2.18) with 〈ψn+1|, we
have

〈ψn−1| â |ψn〉 = An , 〈ψn+1| â† |ψn〉 = Bn+1 (12.2.19)

By comparing the two equations in (12.2.19), taking the transpose of the second equation,
and let n+ 1→ n, we deduce that

〈ψn−1| â |ψn〉 = B∗n (12.2.20)

It is clear that
An = B∗n (12.2.21)

Since

â†â |ψn〉 = Anâ
† |ψn−1〉 = AnBn |ψn〉 (12.2.22)

= |An|2 |ψn〉 = n |ψn〉 (12.2.23)

We conclude that
An =

√
n (12.2.24)

to within an arbitrary phase factor. But the phase factor can be absorbed into the definition
of the eigenfunction |ψn〉 since it is defined to within a arbitrary phase factor. Therefore, for
simplicity, we assume that An and Bn are both real. Therefore

â |ψn〉 =
√
n |ψn−1〉 (12.2.25)

â† |ψn〉 =
√
n+ 1 |ψn+1〉 (12.2.26)

12.2.1 Eigenfunction by the Ladder Approach

With the raising operators, we can construct the requisite eigenfunctions if we only know the
ground state eigenfunction. The ground state eigenfunction satisfies

â |ψ0〉 = 0 (12.2.27)

Written explicitly in coordinate space representation we have

1√
2

(
d

dξ
+ ξ

)
ψ0 (ξ) = 0 (12.2.28)

We can solve the above ordinary differential equation to get

ψ0 (ξ) =
1

π1/4
e−ξ

2/2 (12.2.29)

We can also verify that ψ0 (ξ) satisfies (12.2.28) by direct substitution. Consequently, one
can show that (

â†
)n |ψ0〉 =

√
n! |ψn〉 (12.2.30)

or that the n-th eigenstate is

|ψn〉 =
1√
n!

(
â†
)n |ψ0〉 (12.2.31)
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12.3 Schrödinger Picture versus Heisenberg Picture

At this juncture, it is prudent to discuss the difference between the Schrödinger picture
versus the Heisenberg picture of quantum mechanics. In the Schrödinger picture, the time
dependence is in the wavefunction or the state vector |ψ〉 = |ψ(t)〉; whereas in the Heisenberg
picture, the time dependence is in the operator that represents an observable which is a
measurable quantity. As shall be seen, the Heisenberg picture is closer to the classical picture.

The Schrödinger equation is given by

Ĥ|ψ〉 = i~∂t|ψ〉 (12.3.1)

The formal solution to the above in operator form can be written as

|ψ(t)〉 = e−
i
~ Ĥt|ψ0〉 (12.3.2)

where |ψ0〉 = |ψ(0)〉 is the state vector at t = 0 which is independent of time, and Ĥ in
(12.3.1) is time independent. The expectation value of an operator Ô, which represents an
observable or a measurable quantity, is

〈Ô〉 = 〈ψ(t)|Ô|ψ(t)〉 = 〈ψ0|e
i
~ ĤtÔ e−

i
~ Ĥt|ψ0〉 = 〈ψ0|ÔH(t)|ψ0〉 (12.3.3)

where

ÔH = e
i
~ ĤtÔ e−

i
~ Ĥt = Û†(t)ÔÛ(t) (12.3.4)

and

Û(t) = e−
i
~ Ĥt (12.3.5)

Here, Û(t) is the propagator or the time evolution operator. It is clearly unitary since
Û†(t)Û(t) = Î.

In the above, Ô is time independent in the Schrödinger picture, but ÔH(t) is time depen-
dent in the Heisenberg picture. Hence, in general, the relationship between an operator in
the Schrödinger picture and in the Heisenberg picture is given by

ÔH(t) = e
i
~ ĤtÔSe

− i
~ Ĥt (12.3.6)

where the subscripts “H” and “S” mean the Heisenberg picture and the Schrödinger picture
respectively. Clearly, ÔS = ÔH(t = 0). It can be shown easily that

dÔH
dt

=
i

~

(
ĤÔH − ÔHĤ

)
=
i

~

[
Ĥ, ÔH

]
(12.3.7)

This is the Heisenberg equation of motion for quantum operators.
For the simple quantum harmonic oscillator,

Ĥ = ~ω
(
â†â+

1

2

)
(12.3.8)
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It can be shown easily that [
Ĥ, â

]
= −~ωâ (12.3.9)

or that

dâ

dt
= −iωâ (12.3.10)

after using the commutation relation for that ââ†â = (Î − â†â)â. Consequently, solving give

â(t) = â(0)e−iωt (12.3.11)

Similarly, one can show that

â†(t) = â†(0)eiωt (12.3.12)

The above are the annihilation and creation operators in the Heisenberg picture.

12.3.1 Quantum Hamiltonian Mechanics

We can derive the quantum version of Hamiltonian mechanics.∗ In the Heisenberg picture,
the operators which represent observables are functions of time, and the equations of motion
for the observable operators in Heisenberg picture evolve as

∂q̂

∂t
= − i

~

[
q̂, Ĥ

]
,

∂p̂

∂t
= − i

~

[
p̂, Ĥ

]
(12.3.13)

The basic commutation relation is

[q̂, p̂] = q̂p̂− p̂q̂ = i~Î (12.3.14)

Equation (12.3.14) above can be easily verified in the Schrödinger picture because the coor-
dinate representations of p̂ and q̂ are

p̂ = −i~∂q = −i~ ∂
∂q
, q̂ = q (12.3.15)

Hence, (12.3.14) can be easily verified by substituting the above into it. In other words, they
follow from de Broglie and Schrödinger postulates, which are the fundamental postulates lead-
ing to quantum mechanics. In contrast, some schools assume that the commutation relation
[q̂, p̂] = i~Î as the fundamental quantum postulate, and that de Broglie and Schrödinger pos-
tulates being derivable from it.† Some authors refer to this as canonical quantization, where
the classical variables p and q as canonical variables that are elevated to be quantum opera-
tors, and the commutation relation between them as canonical commutation. The two views

∗This section is extracted from Chew, Liu, Salazer-Lazarus, and Wei, “Quantum Electromagnetics: A New
Look,” to be published in IEEE J. Multiscale Multiphysics Computation.
†This is a view promulgated by Dirac also.
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are largely equivalent, but we favor the historical development over the formal commutation
relation.

Having verified (12.3.14) in Schrödinger picture, it can be easily verified in the Heisenberg
picture as well, namely

[q̂(t), p̂(t)] = i~Î (12.3.16)

The above is also known as the equal time commutator.
It can be shown by the repeated application of the commutator in (12.3.16) that

[p̂, q̂n] = −inq̂n−1~ (12.3.17)

Note that the above is derived without applying calculus, but only using (12.3.16). Never-
theless we can borrow the calculus notation and rewrite the above as

[p̂, q̂n] = −inq̂n−1~ = −i~
(
∂

∂q̂
q̂n
)

(12.3.18)

As has been seen before, the derivative with respect to an operator has no meaning unless
the operator acts on its eigenvector. Consequently, the above can be rewritten as

[p̂, q̂n]|q〉 = −inq̂n−1~|q〉 = −inqn−1~|q〉 = −i~
(
∂

∂q
qn
)
|q〉 = −i~

(
∂

∂q̂
q̂n
)
|q〉 (12.3.19)

In the above |q〉 is the eigenvector of the position operator q̂ with eigenvalue q, namely, that
q̂|q〉 = q|q〉. It is to be noted that the ∂q̂ operator above acts only on q̂n, and nothing beyond
to its right.

One can expand

Ĥ(p̂, q̂) = Ĥ0(p̂, 0) + Ĥ1(p̂, 0)q̂ + Ĥ2(p̂, 0)q̂2 + Ĥ3(p̂, 0)q̂3 + · · · (12.3.20)

then it is clear that [
p̂, Ĥ

]
= −i~ ∂

∂q̂
Ĥ(p̂, q̂) (12.3.21)

Similarly, one can show that [
q̂, Ĥ

]
= i~

∂

∂p̂
Ĥ(p̂, q̂) (12.3.22)

Hence, (12.3.13) can then be rewritten as

∂q̂

∂t
=
∂Ĥ(p̂, q̂)

∂p̂
,

∂p̂

∂t
= −∂Ĥ(p̂, q̂)

∂q̂
(12.3.23)

The above are just the Hamilton equations for a quantum system: they bear striking similar-
ities to the classical Hamilton equations of motion. It is to be noted that the above equations
(12.3.23) do not involve ~, but ~ surfaces in the coordinate representation of the operator p̂
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in (12.3.15). In addition, one needs to take the expectation value of (12.3.23) to arrive at
their classical analogue.

Therefore, the procedure for obtaining the quantum equations of motion is clear. First,
the classical Hamiltonian for the system is derived. Then the conjugate variables, in this case,
position q and momentum p, are elevated to become quantum operators q̂ and p̂. In turn,
the Hamiltonian becomes a quantum operator as well. Then the quantum state of the system
evolves according to (12.3.1) and (12.3.2).

More important, in the Heisenberg picture, the quantum equations of motion have the
same algebra as the classical equations of motion as in (12.3.23). A summary of this quanti-
zation procedure is given in Figure 12.1.

Figure 12.1: (Left) The classical Hamiltonian and the classical equations of motion. (Right)
The quantum Hamiltonian and the quantum equations of motion. The quantum Hamiltonian
is obtained from the classical Hamiltonian by elevating the conjugate variables pj and qj to
become quantum operator, and endowing them with a commutation relation. The commuta-
tor induces derivative operator, making the quantum equations of motion strikingly similar
to the classical ones. The figure is for many particle system, but it can be specialized to one
particle system by letting i = j.

12.4 Quantization of Waves on a Linear Atomic Chain–
Phonons

When a particle is in simple harmonic motion, quantum mechanics allows us to quantize its
motion using Schrödinger equation for the harmonic oscillator. When we have an atomic
chain, there will be coupling forces between the atoms. When one of the atoms is set into
simple harmonic oscillation, the whole chain will be in simple harmonic oscillation due to
coupling between them. Since the energy of one single particle is quantized in the quantum
realm, we expect that harmonic oscillation of the whole chain to be quantized in energy as
well. This is a much easier notion to accept if we accept that the energy of one particle is
quantized.

Before proceeding further, it will be prudent to visit the physics of coupled LC tank
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circuits. A lone tank circuit has only one resonant frequency. As soon as we put two tank
circuits next to each other, the coupled system has two resonant frequencies. A chain of tank
circuits coupled together will have many resonant frequencies or modes. A continuum of tank
circuits forms the transmission line which has infinitely many propagating modes (see Figure
12.1).

Figure 12.1: A transmission line of infinite length allows the propagation of a traveling wave
of any frequency on it. It can be considered as due to a chain of coupled harmonic oscillators.

Figure 12.2: The linear atomic chain (redrawn from Haken).

For atoms on a linear atomic chain, assuming only nearest neighbor forces between the
particles, the equation of motion, according to Newton’s law, is

m0q̈`(t) = f [q`+1(t)− q`(t)]− f [q`(t)− q`−1(t)]

= f [q`+1(t)− 2q`(t) + q`−1(t)] (12.4.1)

The left-hand side is the inertial force needed to accelerate the atom at position `. The
right-hand side is the force exerted on the same atom in accordance to Hooke’s law.

The above equation of motion can also be derived from the Hamiltonian of the system.
First, one notes that the kinetic energy of the system is

T =

N∑
`=1

m0

2
q̇2
` =

N∑
`=1

p2
`

2m0
(12.4.2)

while the potential energy

V =
1

2
f

N∑
`=1

(q` − q`+1)
2

(12.4.3)

such that the force on the `-th atom is

F` = − ∂

∂q`
V (12.4.4)



184 Quantum Mechanics Made Simple

The classical Hamiltonian of the system is then

H = T + V =
N∑̀
=1

p2
`

2m0
+

1

2
f
N∑̀
=1

(q` − q`+1)
2

(12.4.5)

Furthermore, we impose the periodic boundary condition so that

q` = q`+N , p` = p`+N (12.4.6)

so that the above summations need only be over one period of the linear atomic chain.
The equation of motion (12.4.1) can also be derived from the above using Hamilton equa-

tions of motion derived previously, and reproduced here as

q̇`′ = ∂H/∂p`′ , ṗ`′ = −∂H/∂q`′ (12.4.7)

It is to be noted that H(q1, q2, . . . , qN ; p1, p2, . . . , pN ) is a functional.‡ Moreover, since the
conjugate variables for different atoms are independent of each other, the sifting property
ensues, namely,

∂p`/∂p`′ = δ`,`′ (12.4.8)

Taking the first variation of the Hamiltonian with respect to the first variation of the
conjugate variables p` and q`, one has

δH =
N∑̀
=1

p`
m0

δp` + f
N∑̀
=1

(q` − q`+1) (δq` − δq`+1) (12.4.9)

Dividing the above by δp`′ and δq`′ respectively and letting these variations tend to zero,
then

∂H

∂p`′
=
∑
`

{
p`(t)

m0

∂p`
∂p`′

+ f (q` − q`+1)

(
∂q`
∂p`′

− ∂q`+1

∂p`′

)}
(12.4.10)

∂H

∂q`′
=
∑
`

{
p`(t)

m0

∂p`
∂q`′

+ f (q` − q`+1)

(
∂q`
∂q`′

− ∂q`+1

∂q`′

)}
(12.4.11)

It is clear that due to the independence of q` and p`, and that these are independent particles,

∂p`
∂p`′

=
∂q`
∂q`′

= δ``′
∂q`
∂p`′

=
∂p`
∂q`′

= 0 (12.4.12)

where δ``′ is the Kronecker delta function. Upon carefully applying the sifting property of
the Kronecker delta function, and the Hamilton equations of motion (12.4.7), one has

q̇`′ (t) =
1

m0
p`′ (t) , ṗ`′ (t) = f [q`′+1 (t)− 2q`′ (t) + q`′−1 (t)] (12.4.13)

Combining the above, (12.4.1) is recovered.

‡A functional is a function of functions. The functions here are the vectors q = [q1, q2, . . . , qN ], p =
[p1, p2, . . . , pN ].
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12.4.1 Quantization: A Direct Approach

In the direct quantization approach, first, the conjugate variables, p` and q` are first elevated
to be operators, p̂` and q̂`. Then the classical Hamiltonian is elevated to be a quantum
Hamiltonian, namely,

Ĥ = T̂ + V̂ =
N∑̀
=1

p̂2
`

2m0
+

1

2
f
N∑̀
=1

(q̂` − q̂`+1)
2

(12.4.14)

Furthermore, p̂` and q̂` are now endowed with a commutator

[q̂`, p̂`′ ] = i~Îδ`,`′ (12.4.15)

The above equal-time commutator induces similar algebra as in the lone (single) quantum
harmonic oscillator case, but with the presence of the Kronecker delta function δij implying
further that the oscillators i and j are independent of each other. Similar to the lone harmonic
oscillator case, it can be shown that

[p̂`′ , q̂
n
` ] = −inδ``′ q̂n−1

` ~ = −i~ ∂

∂q̂`′
q̂n` ⇒

[
p̂`′ , Ĥ

]
= −i~ ∂

∂q̂`′
Ĥ = i~ ˙̂p`′(t) (12.4.16)

[q̂`′ , p̂
n
` ] = inδ``′ p̂

n−1
` ~ = i~

∂

∂p̂`′
p̂n` ⇒

[
q̂`′ , Ĥ

]
= i~

∂

∂p̂`′
Ĥ = i~ ˙̂q`′(t) (12.4.17)

As is seen, the above yields the same algebra as the classical Hamiltonian case, yielding
the quantum Hamilton equations of motion very similar to (12.4.7), but with the conjugate
variables replaced by operators. Going through the same algebra, the quantum equation of
motion can be derived:

m0
¨̂q`(t) = f [q̂`+1(t)− 2q̂`(t) + q̂`−1(t)] (12.4.18)

The above operators are in the Heisenberg picture, and they operate on a quantum state
|ψ0〉. Better still, they can be converted to observable quantities if their expectation values
are taken with respect to a quantum state |ψ0〉.

12.4.2 Quantization: Mode Decomposition Approach

In the spirit of separation of variables, an eigenmode of (12.4.1) or (12.4.13) is of the form

q`(t) = qν,`Bν(t) (12.4.19)

where

B̈ν(t) = −ω2
νBν(t) (12.4.20)

which is the equation of motion of a simple harmonic oscillator. Upon substituting the above
into (12.4.1) gives rise to

−m0ω
2
νqν,` = f [qν,`+1(t)− 2qν,`(t) + qν,`−1(t)] (12.4.21)
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The above is a finite difference equation, which is an approximation to −k2qk(x) = d2

dx2 qk(x).
Hence, (12.4.18) admits traveling wave or eigen solution of the form

qν,` =
1√
N
eikν`a (12.4.22)

Furthermore, the periodic boundary condition is imposed so that

qν,` = qν,`+N (12.4.23)

Consequently, due to this boundary condition,

kν =
2νπ

Na
(12.4.24)

where ν is an integer ranging from −∞ to ∞. Since kν is countable, we will replace the
subscript ν with k as an index. In other words, ν → k and kν → k. Furthermore, upon
substituting the eigenmode solution (12.4.22) into (12.4.21) gives

−m0ω
2
kqk,` = f

(
eika − 2 + e−ika

)
qk,` = −4f sin2

(
ka

2

)
qk,` (12.4.25)

yielding the dispersion relation, a relation between frequency ωk and the wave number k, as

ω2
k =

4f

m0
sin2

(
ka

2

)
(12.4.26)

If the inner product between two eigenmodes is defined to be

〈qk, qk′〉 =

N∑
`=1

q∗k,lqk′,l (12.4.27)

then they are orthonormal as

〈qk, qk′〉 =

N∑
`=1

q∗k,lqk′,l =

N∑
`=1

1

N
ei(k

′−k)la = δk,k′ (12.4.28)

If q`(t) is expanded in a single mode only, it can be shown that

q`(t)− q`+1(t) = (qk,` − qk,`+1)Bk(t) =
(
1− eika

)
qk,`Bk(t) = −2ieika/2 sin(ka/2)qk,`Bk(t)

(12.4.29)

Now, if q` is expanded in terms of sum of the eigenmodes, or

q`(t) =
∑
k

qk,`Bk(t) =
∑
k

q∗k,`B
∗
k(t) (12.4.30)
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where the second equality follows because q`(t) is real. Then the potential energy part of the
Hamiltonian, after using (12.4.3), (12.4.29), and (12.4.30) is

V =
f

2

N∑
`=1

(q` − q`+1)
2

=
f

2

N∑
`=1

(∑
k

−2ieika/2 sin(ka/2)qk,lBk(t)

)(∑
k′

2ie−ik
′a/2 sin(k′a/2)q∗k′,lB

∗
k′(t)

)

=
f

2

∑
k,k′

4eika/2 sin(ka/2)e−ik
′a/2 sin(k′a/2)

(
N∑
`=1

qk,lq
∗
k′,l

)
Bk(t)B∗k′(t)

=
f

2

∑
k,k′

4eika/2 sin(ka/2)e−ik
′a/2 sin(k′a/2)δkk′Bk(t)B∗k′(t)

=
f

2

∑
k

4 sin2(ka/2)|Bk(t)|2 =
m0

2

∑
k

ω2
k|Bk(t)|2 (12.4.31)

where (12.4.28) has been used above. Similarly, for the kinetic energy part of the Hamiltonian,
it is

T =

N∑
`=1

1

2
m0q̇

2
` =

N∑
`=1

1

2
m0

∑
k,k′

qk,`Ḃk(t)q∗k′,`Ḃ
∗
k′(t)

=
1

2
m0

∑
k,k′

Ḃk(t)Ḃ∗k′(t)δkk′ =
1

2
m0

∑
k

|Ḃk(t)|2 (12.4.32)

Consequently,

H =
1

2
m0

∑
k

[
|Ḃk(t)|2 + ω2

k|Bk(t)|2
]

(12.4.33)

where the first term in (12.4.33) corresponds to the kinetic energy while the second term cor-
responds to the potential energy of the k-th mode. A closer inspection of the above indicates
that each of the modes behaves like a simple harmonic oscillator. Hence, the Hamiltonian of
each mode resembles that of a simple harmonic oscillator. The total Hamiltonian is just the
sum of the Hamiltonian of each simple harmonic oscillator coming from each mode.

12.4.2.1 More on Traveling Wave Modes

The general solution to (12.4.20) is

Bk(t) = Bk,+e
−iωkt +Bk,−e

iωkt (12.4.34)

Thus, from (12.4.30), after using (12.4.20)

q`(t) =
∑
k

qk,`Bk(t) =
1√
N

∑
k

(
Bk,+e

−iωkteik`a +Bk,−e
iωkteik`a

)
(12.4.35)
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Since ω−k = ωk from (12.4.26), the first and second sums physically represent plane wave
modes propagating in all directions, and hence, only one of the two sums suffices to express
the modal expansion of a general traveling wave solution. Therefore, when only one sum is
needed to capture this physics, and it can be expressed as

q`(t) =
1√
N

∑
k

Bk(0)e−iωkteik`a (12.4.36)

Alternatively, the above can be rewritten as

q`(t) =
1

2
√
N

∑
k

[
Bk(0)e−iωkteik`a +B∗k(0)eiωkte−ik`a

]
(12.4.37)

The second term comes from that the left-hand side of (12.4.36) is real-valued, hence taking
its complex conjugation yields the same value. The factor of 1/2 can be removed if we only
sum over positive k’s. The last form is preferred so as to keep each mode real-valued. So
for a traveling wave mode, the amplitude Bk(t) = Bk(0)e−iωkt is a rotating wave. Moreover,
using the above gives |Ḃk|2 = ω2

k|Bk|2 and hence, the Hamiltonian is always constants of
time. Notice that the kinetic energy and the potential energy are equal to each other, a mark
of an simple harmonic oscillator.

In this case, under the rotating wave picture, where Bk(t) ∼ e−iωkt, the Hamiltonian of
the k-th mode is

Hk = m0ω
2
k|Bk(t)|2 = m0ω

2
k|Bk(0)|2 (12.4.38)

where |Bk(t)|, and hence the Hamiltonian, is time independent. Using Euler’s identity for
eiωkt = cos(ωkt) + i sin(ωkt), one lets

√
2m0ωkBk(t) = pk(t)± iqk(t)

or

2m0ωk|Bk(t)|2 = p2
k(t) + q2

k(t) (12.4.39)

then the Hamiltonian for the k-th mode is

Hk =
ωk
2

[
p2
k(t) + q2

k(t)
]

(12.4.40)

In the above, pk(t) and qk(t) are sinusoidal functions in quadrature phase. The above is
identical to the Hamiltonian of a classical harmonic oscillator for normalized coordinates and
momenta. We can think of pk(t) and qk(t) to be the in phase and quadrature component of
the displacement of the harmonic oscillator. Each of them is time dependent, but the sum of
their squares is not time-dependent.

The reason why the above simple form ensues is:

1. By imposing periodic boundary condition on the linear atomic chain, only countable,
discrete modes with wavenumber k are allowed to propagate on the linear atomic chain;
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2. Only a single mode is allowed to propagate on the linear atomic chain so as to make
the solution and the corresponding Hamiltonian very simple.

The physical picture we shall have of the above is that because only one mode exists, all
the atoms on the chain are oscillating at the same frequency and in unison except for a phase
lag. So each of them is in a simple harmonic motion. Since we have learned how to convert
a classical harmonic oscillator to a quantum harmonic oscillator, the same principles can be
applied to turn the above into a chain of coupled quantum harmonic oscillators.

To convert the above into a quantum harmonic oscillator, we elevate the above amplitudes
to operators, namely

Ĥk =
ωk
2

(
p̂2
k + q̂2

k

)
(12.4.41)

where

p̂k = −i~ d

dqk
, q̂2

k = q2
k (12.4.42)

in coordinate space representation. We can further define dimensionless entities

ξk = qk/
√
~, Π̂k = p̂k/

√
~ = −i d

dξk
(12.4.43)

so that

Ĥk =
~ωk

2

(
− d2

dξ2
k

+ ξ2
k

)
=

~ωk
2

(Π̂2
k + ξ2

k) (12.4.44)

(12.4.45)

The above is the quantum analogue of (12.4.40). Furthermore, we can show that

â†k =
1√
2

(
−iΠ̂k + ξ̂k

)
âk(t) =

1√
2

(
iΠ̂k(t) + ξ̂k(t)

)
(12.4.46)(

Π̂k(t), ξ̂k(t)
)

(12.4.47)

Hence, by direct use of the above, we can show that

Ĥk =
~ωk

2

(
â†kâk + âkâ

†
k

)
(12.4.48)

The above can be transformed to the Heisenberg picture using the unitary transformation of
the time-evolution operator yielding

Ĥk =
~ωk

2

[
â†k(t)âk(t) + âk(t)â†k(t)

]
(12.4.49)
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In the above, the operators are in the rotating wave picture, with time dependence propor-
tional to e±iωkt. Hence, â†k(t) and âk(t) are the quantum analogue of Bk(t) and B∗k(t) which
are also expressed in the rotating wave picture. Therefore, we can rewrite (12.4.38) more
suggestively as

Hk =
1

2
m0ω

2
k [B∗k(t)Bk(t) +Bk(t)B∗k(t)] (12.4.50)

The quantum analogue of the above is to elevate the Bk and B∗k to operators or

Ĥk =
1

2
m0ω

2
k

[
B̂†k(t)B̂k(t) + B̂k(t)B̂†k(t)

]
(12.4.51)

We can identify that

B̂k(t) =

√
~

m0ωk
âk(t)

B̂†k(t) =

√
~

m0ωk
â†k(t) (12.4.52)

by comparing (12.4.51) with (12.4.48).

Had we assumed that the solutions are summation of different k modes, then (12.4.37),
after elevation to quantum operators, becomes

q̂`(t) =
∑
k

1

2

√
~

m0ωkN
eik`aâk(t) + c.c. (12.4.53)

p̂`(t) =
∑
k

−i1
2

√
~m0ωk
N

eik`aâk(t) + c.c. (12.4.54)

The annihilation operator for the k-th mode is shown to have the time dependence of
exp(−iωt) in (12.3.11). Hence, the above can be rewritten as

q̂`(t) =
∑
k

1

2

√
~

m0ωkN
eik`a−iωktâk + c.c. (12.4.55)

p̂`(t) =
∑
k

−i1
2

√
~m0ωk
N

eik`a−iωktâk + c.c. (12.4.56)

where âk = âk(0).

The above can also be directly derived from the quantum equation of motion, (12.4.18).
It also represents a multitude of propagating modes with different k wavenumbers. They can
come together to form a wave packet that more realistically represents a wave that propagates
on an infinite linear atomic chain. A packet of energy then satisfies locality and causality if
it is associated with a wave packet.
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12.5 The Continuum Limit

In the continuum limit, we let

m0 = ρa (12.5.1)

Then (12.4.1) becomes

ρaq̈(x, t) = fa2 ∂
2

∂x2
q(x, t) (12.5.2)

or

ρq̈(x, t) = g
∂2

∂x2
q(x, t) (12.5.3)

where g = fa. Defining the momentum density to be

π(x, t) = ρq̇(x, t) (12.5.4)

then a Hamiltonian that will lead to (12.5.3) is

H =
1

2ρ

∫ L

0

π2(x, t)dx+
g

2

∫ L

0

[
∂q(x, t)

∂x

]2

dx (12.5.5)

The Hamilton equations of motion in the continuum limit has to be expressed with functional
derivatives. Analogous to the discrete case expounded in (12.4.7), they are

∂q(x, t)

∂t
=

δH

δπ(x, t)
,

∂π(x, t)

∂t
= − δH

δq(x, t)
(12.5.6)

The above are the Hamilton equations in the continuum limit expressed in terms of functional
derivatives. Furthermore, analogous to (12.4.12) for the discrete case, the continuum case
becomes

δq(x, t)

δq(x′, t)
=
δπ(x, t)

δπ(x, t)
= δ(x− x′), δq(x, t)

δπ(x′, t)
=
δπ(x, t)

δq(x′, t)
= 0 (12.5.7)

To obtain the functional derivatives, one takes the first variation of (12.5.5) to get

δH =
1

ρ

∫ L

0

dxπ(x, t)δπ(x, t) + g

∫ L

0

dx
∂q(x, t)

∂x

∂δq(x, t)

∂x
(12.5.8)

After using integration by parts then

δH =
1

ρ

∫ L

0

dxπ(x, t)δπ(x, t)− g
∫ L

0

dx
∂2q(x, t)

∂x2
δq(x, t) (12.5.9)

Dividing the above by the first variations in π(x, t) and q(x, t), respectively gives rise to

δH

δπ(x′, t)
=

1

ρ

∫ L

0

dxπ(x, t)
δπ(x, t)

δπ(x′, t)
− g

∫ L

0

dx
∂2q(x, t)

∂x2

δq(x, t)

δπ(x′, t)
(12.5.10)
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δH

δq(x′, t)
=

1

ρ

∫ L

0

dxπ(x, t)
δπ(x, t)

δq(x′, t)
− g

∫ L

0

dx
∂2q(x, t)

∂x2

δq(x, t)

δq(x′, t)
(12.5.11)

Making use of (12.5.6) and (12.5.7) yields

∂q(x, t)

∂t
=
π(x, t)

ρ
,

∂π(x, t)

∂t
= g

∂2q(x, t)

∂x2
(12.5.12)

Combining the above gives rise to (12.5.3).

12.5.1 Quantization in the Continuum Limit

In quantization, the conjugate variables π and q are first elevated to be quantum operators.
Then the Hamiltonian also become a quantum operator, namely,

Ĥ =
1

2ρ

∫ L

0

π̂2(x, t)dx+
g

2

∫ L

0

(
∂q̂(x, t)

∂x

)2

dx (12.5.13)

The conjugate variables are endowed with the commutator:

[π̂(x, t), q̂(x′, t)] = i~δ(x− x′)Î (12.5.14)

where the Kronecker delta function becomes a Dirac delta function in the continuum case.
With this commutation relation, similar to the discrete case in (12.4.16) and (12.4.17), it is
quite easy to show that

[π̂(x′, t), q̂n(x, t)] = −i~δ(x− x′)nq̂n−1(x, t) = −i~δq̂
n(x, t)

δq̂(x′, t)

⇒
[
π̂(x′, t), Ĥ

]
= −i~ δĤ

δq̂(x′, t)
= i~ ˙̂π(x′, t)

(12.5.15)

[q̂(x′, t), π̂n(x, t)] = i~δ(x− x′)nπ̂n−1(x, t) = i~
δπ̂n(x, t)

δπ̂(x′, t)

⇒
[
q̂(x′, t), Ĥ

]
= i~

δĤ

δπ̂(x′, t)
= i~ ˙̂q(x′, t)

(12.5.16)

where the functional derivatives of operators have meaning only when they act on the eigen-
vectors of these operators. With the use of the above, one arrives at the quantum equation
of motion:

ρ¨̂q(x, t) = g
∂2

∂x2
q̂(x, t) (12.5.17)
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12.5.1.1 Expansion in terms of traveling wave modes

As before, the field can be expanded in terms of traveling wave modes, and the solution of
the quantized fields can be written as

q̂(x, t) =
∑
k

1

2

√
~

ρωkL
eikx−iωktâk + c.c. (12.5.18)

π̂(x, t) = −i
∑
k

1

2

√
~ωkρ
L

eikx−iωktâk + c.c. (12.5.19)

To obtain the above from the discrete case, one needs to replace m0 = ρa, N = L/a, and
`a = x.

12.6 Quantization of Electromagnetic Field

For electromagnetic field, the harmonic oscillators are dipoles in a medium that are polarized
by an electric field. In general, the electric flux in a medium is given by

D = ε0E + P (12.6.1)

The first term is the contribution to the electric flux D due to vacuum, while the second term
is the polarization density contributed from dipoles polarized in a material medium by an
electric field. It is customary to write P = ε0χE to indicate that the polarization density is
proportional to the electric field.

The time variation of the electric flux, ∂tD, is instrumental in giving rise to displacement
current, and hence, yielding a propagating wave. This electric flux exists even in vacuum.
Hence, we can imagine that even vacuum is polarized by an electric field to produce dipole
density.§ In other words, the oscillating electric dipole will produce a magnetic field creating
an inductive effect. Together, they can form a resonating system behaving like a harmonic
oscillator. They resemble a tiny LC tank circuit.

Maxwell’s equations are

∇×E = −∂tB,
1

µ
∇×B = ∂tD + J (12.6.2)

∇ ·B = 0, ∇ ·D = % (12.6.3)

where B = µ0H and D = εE. We can assume that ε is a constant representing a homogeneous
medium, as the mathematics is not any more difficult. With the potential approach, one lets

B = ∇×A, E = −Ȧ−∇Φ (12.6.4)

§It is debatable as to what gives rise to these dipoles in vacuum. It could be electron-positron pairs that
are embedded in vacuum. When vacuum is bombarded with an energetic photon, it is known to produce an
electron-position pair.
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When the first equation above is substituted into the first equation in (12.6.2), the second
equation in (12.6.4) above for E is obtained. The above can be substituted into the second
equation in (12.6.2), and with the use of Lorenz gauge that

∇ ·A = −µ0εΦ̇ (12.6.5)

then one arrives at

∇×∇×A(r, t)−∇(∇ ·A(r, t)) + µ0ε∂
2
tA(r, t) = µ0J(r, t) (12.6.6)

With the second equation in (12.6.4) substituted into the second equation in (12.6.3) plus the
use of the Lorenz gauge, then

µ0ε∂
2
t Φ(r, t)−∇2Φ(r, t) = %(r, t)/ε (12.6.7)

In the case where the sources are at infinity, the Φ = 0 gauge can be used. In this case, the
Lorenz gauge is the same as the Coulomb gauge, namely, ∇ ·A = 0.

12.6.1 Hamiltonian

Before quantizing Maxwell’s equations, the Hamiltonian of the system should be derived. In
general, the Hamiltonian represents the total energy of the system, and it is given by

H =

∫
drH (r) (12.6.8)

where

H (r) =
1

2

[
εE2 +

1

µ 0

B2

]
(12.6.9)

In the potential formulation, the above becomes

H (r) =
1

2

[
ε(Ȧ)2 +

1

µ 0

(∇×A)2

]
(12.6.10)

As in the linear atomic chain case, we will treat a one dimensional equivalence of the above
to arrive at

H =

∫ L

0

dx
1

2

[
ε(Ȧz)

2 +
1

µ0
(∂xAz)

2

]
(12.6.11)

The conjugate momentum can be defined to be Πz = εȦz, and the above becomes

H =

∫ L

0

dx
1

2

[
1

ε
(Πz)

2 +
1

µ0
(∂xAz)

2

]
(12.6.12)

With the mapping

ε⇒ ρ,
1

µ0
⇒ g, Πz ⇒ π, Az ⇒ q (12.6.13)
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the above is entirely analogous to the linear atomic chain case. The equation of motion for
Az can be derived as

∂2
xAz = µ0εÄz (12.6.14)

Hence, quantization follows the same path as before, and one obtains

Âz(x, t) =
∑
k

1

2

√
~

ωkLε0
âke

ikx−iωkt + c.c. (12.6.15)

Then the electric field Ez can be derived yielding

Êz(x, t) =
i

2

√
~ωk
Lε0

âk(t)eikx + c.c. (12.6.16)

Similarly, the Bz can be derived giving

B̂y(x, t) =
∑
k

i

2

√
~ωk
Lε0

1

c
âke

ikx−iωkt + c.c. (12.6.17)

The above can be generalized to a plane wave mode propagating in arbitrary direction, namely,

Ê(r, t) =
∑
k,s

i

2

√
~ωk
V ε0

esâk,se
ik·r−iωkt + c.c. (12.6.18)

B̂(r, t) =
∑
k,s

i

2

√
~ωk
V ε0

1

c
ek × esâk,se

ik·r−iωkt + c.c. (12.6.19)

where es is a unit vector denoting the polarization of the electric field, and ek is a unit vector
pointing in the k direction. Hence, the above is orthogonal to the k vector. It can be either
linearly polarized or circularly polarized. In the linearly polarized case, es is either vertical
or horizontal. In the circularly polarized case, es is either right-hand or left-hand circularly
polarized. In the above, we have defined the Hamiltonian as an integral over a volume V , and
hence, the normalization above is with respect to V . The above equations are constructed
so that if their expectation values are found with respect to a quantum state |ψ0〉, they yield
real value fields. Hence, these field operators are Hermitian operators.

The multitude of modes above allows a photon that is emitted by an atom, say by spon-
taneous emission, to form a wave packet that is localized in time and space. This makes the
photon emission a causal event. Moreover, this wave packet propagates through space with
the speed of light. Also, this wave packet zips through space with the aid of the coupled
quantum harmonic oscillators.

It is seen that if the photon is purely monochromatic, it will be non-causal, and cannot
represent the emission from an atomic transition. Hence, it is more appropriate to think
of a photon as quasi-monochromatic with a linear superposition of modes with different
wavenumbers k, allowing a localized wave packet to be formed. The fact that photons are
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particles cannot be demonstrated by the mathematics expressed in the above equations. It is
experimental evidence that has demonstrated that photons are particles, as much as electrons
are particles.

A photon can be thought of as a “particle” possessing an expected or average packet of
energy ~ωe, but it exists as a linear superposition of different modes with different k’s, each
of which zips through space with the velocity of light. Each mode can have a energy ~ωk
associated with it, but as the particle is a linear superposition of different modes, ~ωe is the
expectation value of the photon energy when the photon is in a superposition of different
quantum modes.

It is interesting to note that even though both electrons and photons display wave-particle
duality, but the discovery of their wave-particle duality nature follows a different path. Elec-
trons were thought to be particles very early in time, but compelling experimental evidence
showed that they possessed wave-like properties. On the other hand, photons, first mani-
fested as light, were first thought to be wave, but compelling experimental evidence showed
that they possessed particle-like properties. Now photon is accepted as one of the elementary
particles, or quantum particle, displaying quantum properties.

From the above equations, it can be shown easily that

∇× Ê(r, t) = −∂tB̂(r, t),
1

µ 0

∇× B̂(r, t) = ∂tD̂(r, t) (12.6.20)

where D̂(r, t) = ε0Ê(r, t). The above are quantum Maxwell’s equations where the classical
fields are replaced with field operators.

12.6.1.1 Quantized Maxwell’s equations to photon versus Schrödinger equation
to electron

¶It is often asked if Maxwell’s equations to photon is the same as Schrödinger equation to
electron. They are not exactly identical, or in a sense, this is like comparing apples and
oranges. Both Maxwell’s equations and Schrödinger equation endow their corresponding
particles with wave nature. Both equations associate the particles with a wave field which
displays wave physics. Both particles, photon and electron, are quantum particles subject to
quantum interpretation.

The field operator, for example, Ê, is associated with a mean and a standard deviation
or fluctuation. The mean, for example, is obtained by taking the expectation value of the
field operator by 〈ψ0|Ê|ψ0〉 where |ψ0〉 is the quantum state of the photon For non-classical
photons, such as those in the photon number state, this value is always zero. To obtain
non-zero value, the photon can be assumed to be in the coherent state. On the other hand,
the Schrödinger field of an electron does not have a mean or a standard deviation.

An electron can be detected by its scattering or interaction with a Coulomb potential
for instance. But a photon is unaffected by a Coulomb potential, and its detection is by its
interaction with other dipoles, such as a dielectric medium or an atom. The probability of
detection of an electron at location r can be associated with |ψ0(r)|2. By the same token,

¶This section is written with input from E. Kudeki and A.Y. Liu.
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the probability of detecting a photon at r by dipole interaction is proportional to 〈ψi|Ê†(r) ·
Ê(r)|ψi〉 where |ψi〉 is the quantum state of the photon (see Gerry and Knight, Chapter 5).

The wave nature of their detection will emerge due to the nature of the associated wave
fields, e.g., in the double slit interference experiment. Otherwise, these are quite different
wave fields. Moreover, when the photon wave field operator acts on a quantum state Ê|Ψ0〉,
it gives rise to an infinite dimensional state vector which still bears quantum information.

The quantization of electromagnetic field, also called quantum electrodynamics (QED),
stimulated the growth of quantum field theory and particle physics. The Schrödinger theory
of electron and the pertinent quantum mechanics is called first quantization theory, while the
quantum field theory of electron is called second quantization theory. Hence, QED can be
thought of as a second quantized version of photon theory, and there has been interest in
finding the first quantized version of photon theory, very much akin to Schrödinger theory is
for electron (see O. Keller, Quantum Theory of Near Field Electrodynamics).

12.6.2 Multimode Case and Fock State

When polarization is considered, we may write the Hamiltonian for a single mode photon as

Ĥk =
∑
s

Ĥk,s =
∑
s

~ωk
(
â†k,sâk,s +

1

2

)
(12.6.21)

where s stands for either horizontal or vertical polarization. The above can be easily derived
by considering the electric field with both polarizations present.

In the above, we can denote eigenstate of the Hamiltonian as‖

|ψ〉 = |nv〉|nh〉 (12.6.22)

or better still

|ψ〉 = |nv, nh〉 (12.6.23)

where v stands for vertical polarization and h stands for horizontal polarization. In the
above, there are nv photons in the vertical polarization state and there are nh photons in the
horizontal polarization state.

When many modes are considered simultaneously, it can be shown that the corresponding
Hamiltonian is

Ĥ =
∑
k,s

Ĥk,s =
∑
k,s

~ωk

(
â†k,sâk,s +

1

2

)
(12.6.24)

The eigenstate of the above Hamiltonian can be written as

|ψ〉 =
∏
k,s

|nk,s〉 (12.6.25)

‖When the Hamiltonian consists of sum of the Hamiltonians of two quantum systems, the states of the
Hamiltonian operator can be represented by the product space of the states of the individual quantum system.
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The above can be written alternatively as

|ψ〉 =
∏
s

|nk1,s〉|nk2,s〉|nk3,s〉 · · · =
∏
s

|nk1,s, nk2,s, nk3,snk4,s · · ·〉 =
∏
s

|{nk,s}〉 (12.6.26)

or better still

|ψ〉 = |{nκ}〉 (12.6.27)

where κ stands for all possible combinations of k, s. The above are eigenstates of the corre-
sponding Hamiltonian operator. A general quantum state can be expanded in terms of the
eigenstates of the system as

|ψ〉 =
∑
κ
aκ|{nκ}〉 (12.6.28)

The previously mentioned eigenstate is known as a Fock state or the occupational number
state. It is customary to leave out the states where the occupational number is zero, listing
only the states with non-zero number of photons. For example

|ψ〉 = |3k1,v, 2k2,h, 1k3,v〉 (12.6.29)

indicates a quantum eigenstate with three V (vertical) polarized photons in k1 mode, two H
(horizontal) polarized photons in k2 mode, and one V polarized photon in k3 mode.

12.6.3 One-Photon State

The understanding of the one-photon state is important because of its usefulness in quantum
information, quantum communication, and quantum cryptography. It is prudent to elaborate
on it further. For example, when only one k mode is present, to denote a photon in the vertical
polarization state, and no photons in the horizontal polarization state, the state vector should
be

|ψ〉 = |1v〉|0h〉 (12.6.30)

or just

|ψ〉 = |1v, 0h〉 (12.6.31)

Often, this is just written as

|ψ〉 = |1v〉 (12.6.32)

where the second part is understood. For a photon in arbitrary polarization, it is written as

|ψ〉 = av|1v〉+ ah|1h〉 (12.6.33)

The above denotes a one-photon state where the photon is in the linear superposition of two
orthonormal one-photon states. Hence,

|av|2 + |ah|2 = 1 (12.6.34)
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Since a photon is a package of energy propagating through space via coupled quantum har-
monic oscillators, the above is subject to quantum interpretation. The photon is in the linear
superposition of two quantum states |1v〉 and |1h〉.

Often, photons are generated by atomic transitions whereby the electron changes from a
high energy state to a low energy state giving rise to one or more photons. Since this is a
causal event, the wave field associated with a photon is a localized wave in space time. The
localized wave is formed by linear superposing wave field with different k values. For instance,
a localized one-photon, vertically polarized state is a linear superposition of a number of one-
photon states with different k values as follows:

|ψ〉 =
∑
k

ak,v|1k,v〉 (12.6.35)

The wave field associated with the above state can be localized in space time, and the wave
field satisfies causality.

It is to be noted that (12.6.24) is a quantum Hamiltonian involving the sum over individual
Hamiltonians of different quantum systems. The quantum system arises from a set of spatially
coupled quantum harmonic oscillators. The choice of appropriate modes “diagonalizes” the
system, giving rise to apparently uncoupled systems. When a photon is in a quantum state,
it can be in a linear superposition of different quantum states of these different quantum
systems. Therefore, one-photon states (12.6.33) and (12.6.35) should be thought of as a linear
superposition of different quantum states, subject to the quantum interpretation of quantum
mechanics. The particle is in a linear superposition of states before the measurement, and it
collapses to one of the states after the measurement.

Even though a photon is associated with a packet of energy, when it is detected with a
polarizer (that detects it either in the vertical or horizontal polarized state), it is found either
in one state or the other. The packet of energy is never split between the two states indicated
by (12.6.33). Hence, experiment evidence suggests that a photon is a quantum particle in the
sense that an electron is a quantum particle at the quantum level. The same interpretation
applies to (12.6.35). The subject of quantum interpretation will be discussed later.

12.6.4 Coherent State Revisited

The expectation value of the annihilation and creation operators with respect to the photon
number states is always zero. Therefore, the expectation value of the field operators, which
are proportional to the annihilation and creation operators, is always zero. Hence, the photon
number states are non-classical. To arrive at an expectation value of field operators that are
non-zero, and resemble a classical field, one has to work with the coherent states.

We have studied the coherent state previously. It is defined to be the eigenstate of the
annihilation operator. Namely, if |α〉 represents a coherent state, then

â|α〉 = α|α〉 (12.6.36)

where we have used the eigenvalue α to index the coherent state. Since the number state |n〉
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is complete, we can expand the coherent state in terms of the number state, or

|α〉 =

∞∑
n=0

Cn|n〉 (12.6.37)

When the annihilation operator is applied to both sides, we obtain

â|α〉 =

∞∑
n=0

Cnâ|n〉 =

∞∑
n=1

Cnâ|n〉 =

∞∑
n=1

Cn
√
n|n− 1〉 =

∞∑
n=0

Cn+1

√
n+ 1|n〉 (12.6.38)

where we have used â|0〉 = 0, â|n〉 =
√
n|n− 1〉. Equating the above with α|α〉, we have

∞∑
n=0

Cn+1

√
n+ 1|n〉 = α

∞∑
n=0

Cn|n〉 (12.6.39)

By the orthogonality of the number states, matching the coefficients, we have Cn+1 =
αCn/

√
n+ 1, or

Cn = Cn−1α/
√
n = Cn−2α

2/
√

(n(n− 1)) = C0α
n/
√
n! (12.6.40)

Consequently,

|α〉 = C0

∞∑
n=0

αn√
n!
|n〉 (12.6.41)

The above can be normalized to show that C0 = exp(−|α|2/2).
The photon number operator is n̂ = â†â. It can be shown that the average number of

photons associated with a coherent state is given by

〈n̂〉 = n̄ = 〈α|n̂|α〉 = 〈α|â†â|α〉 = |α|2 (12.6.42)

where 〈α|â† = 〈α|α∗ is used. Moreover

〈n̂2〉 = 〈α|n̂2|α〉 = 〈α|â†ââ†â|α〉 = 〈α|â†â†ââ+ â†â|α〉 = |α|4 + |α|2 = n̄2 + n̄ (12.6.43)

where we have used ââ† − â†â = 1. Then

∆n =
√
〈n̂2〉 − 〈n̂〉2 = n̄1/2 (12.6.44)

The above is characteristic of a Poisson process. The probability of detecting n photons in a
coherent state is

Pn = |〈n|α〉|2 = e−|α|
2 |α|2n

n!
= e−n̄

n̄n

n!
(12.6.45)

typical of a Poisson distribution.∗∗ The fractional uncertainty in the photon number is

∆n

n̄
=

1√
n̄

(12.6.46)
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Figure 12.1: Two typical Poisson distributions. Case (a) has n̄ = 50 while case (b) has
n̄ = 200 (from Haus).

On the other hand, for a photon number state |n′〉, it can be shown that

Pn = |〈n|n′〉|2 = δnn′

The above distribution has zero standard deviation. A light with photon distribution narrower
than a Poisson distribution is known as sub-Poissonian. It illustrates the quantum nature of
light. On the other hand, light with photon distribution broader than a Poisson distribution
is known as super-Poissonian. It illustrates the incoherent nature of light since coherent light
has Poissonian distribution.

12.6.4.1 Time Evolution of the Coherent State

In the Schrödinger picture, the time dependence is with the eigenfunctions; hence, the time
dependence of the coherent state is

|α, t〉 = e−
1
2 |α|

2
∞∑
n=0

αne−i(n+1/2)ωt

√
n!

|n〉 (12.6.47)

The above follows from that the time dependence of the photon number state, which is an
eigenstate, is exp(−iEnt/~) with En = ~ω(n+ 1/2). The above can be rewritten as

|α, t〉 = e−iωt/2e−
1
2 |α|

2
∞∑
n=0

(αe−iωt)n√
n!

|n〉 = e−iωt/2|αe−iωt〉 (12.6.48)

∗∗An example of a Poisson distribution is a shot noise source, producing n̄ photons in interval τ . The
probability of find n photons in this time interval follows the Poisson distribution.
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The above can be derived in an alternate way. In the Heisenberg picture, the coherent
state is time independent, and time-dependent eigenstate can be obtained by applying the
time evolution operator

|α, t〉 = e−iĤt/~|α〉 = e−
1
2 |α|

2
∞∑
n=0

αn√
n!
e−iĤt/~|n〉

= e−
1
2 |α|

2
∞∑
n=0

αn√
n!
e−i(n+1/2)ωt|n〉

= e−iωt/2e−
1
2 |α|

2
∞∑
n=0

(αe−iωt)n√
n!

|n〉 = e−iωt/2|αe−iωt〉 (12.6.49)

It can be further shown that the above can be summed in terms of a “Gaussian pulse”††

indicating that this pulse evolves in time without shape distortion.

Figure 12.2: The time evolution of the coherent state. It follows the motion of a classical
pendulum or harmonic oscillator (From Gerry and Knight).

The expectation value of the field operator in the Heisenberg picture with respect to the
coherent state is then

E(r, t) = 〈α|Ê(r, t)|α〉 =
∑
k,s

1

2

√
~ωk
V ε0

es〈α|âk,s|α〉eik·r−iωkt + c.c.

=
∑
k,s

1

2

√
~ωk
V ε0

esαk,se
ik·r−iωkt + c.c. (12.6.50)

In the above, it is assumed that the coherent state is a product state of the coherent states
of each individual mode, namely,

|α〉 =
∏
k,s

|αk,s〉 (12.6.51)

††It is to be noted that the Gaussian pulse we refer to is with respect to the displacement of the quantum
harmonic oscillator, not with respect to the direction of propagation of the photon.
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Figure 12.3: Evolution of the coherent state as a function of time. The left figure is for α = 5
while the right figure is for α = 10.

so that

〈α|âk,s|α〉 = 〈αk,s|âk,s|αk,s〉 = αk,s (12.6.52)

Similarly,

B(r, t) = 〈α|B̂(r, t)|α〉 =
∑
k,s

1

2

√
~ωk
V ε0

1

c
ek × esαk,se

ik·r−iωkt + c.c. (12.6.53)

The above certainly look like a classical field where αk,s are complex numbers.

Appendix

A Thermal Light and Black-Body Radiation

Coherent state is a state where all the photon number states are in phase and in quantum
coherence. Hence the density representation of the coherent state is

ρ̂ = |α〉〈α| = e−|α|
2
∞∑
n=0

∞∑
n′=0

αn√
n!

α∗n
′

√
n′!
|n〉〈n′| (A1)
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This is indicated by that the off-diagonal elements of the density operator multiply |n〉〈n′|
where n 6= n′ are non-zero due to coherence.

When a quantum harmonic oscillator is in thermal equilibrium with its environment, it
absorbs energy from its environment causing it to be in the linear superposition of |n〉 photon
number states. The state vector can be expressed as

|ψ〉 =

∞∑
n=0

an|n〉 (A2)

But these states are incoherent with each other since they are randomly excited by a thermal
bath. This is the nature of thermal photons. The density operator for such a state can be
written as

ρ̂T = |ψ〉〈ψ| =
∞∑
n=0

|an|2|n〉〈n| (A3)

where the off diagonal terms ensemble average to zero.
According to Boltzmann’s law, at thermal equilibrium, the probability of finding a system

to be energy state En is

P (n) =
e−En/kBT

Z
(A4)

where

Z =

∞∑
n=0

e−En/kBT (A5)

and Z is the partition function. It is clear that
∑∞
n=0 P (n) = 1.

For photon, En =
(
n+ 1

2

)
~ω. Hence,

Z = e−
1
2~ω/kBT

∞∑
n=0

e−n~ω/kBT = e−
1
2~ω/kBT

∞∑
n=0

xn =
e−

1
2~ω/kBT

1− e−~ω/kBT
(A6)

where x = e−~ω/kBT and from (A4)

P (n) = e−n~ω/kBT (1− e−~ω/kBT ) (A7)

The mean photon number is

n̄ =

∞∑
n=0

nP (n) =

∞∑
n=0

nxn(1− x) =
x

1− x
=

1

e~ω/kBT − 1
(A8)

The probability distribution given by (A7) definitely has a broader spread compared to the
case for coherent state, which has a Poissonian probability distribution. Light of this nature
is termed super-Poissonian.

We can use the above to explain black-body radiation. From the above, we deduce that
the average energy of a quantum harmonic oscillator is

〈E〉 = n̄~ω =
~ω

e~ω/kBT − 1
(A9)
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In the limit when ~→ 0, the above becomes 〈E〉 = kBT as predicated by the equi-partition of
energy theorem that each degree of freedom of a particle absorbs energy equal to kBT/2 when
the particle is at thermal equilibrium with its environment. A classical harmonic oscillator
has two degrees of freedom, one for kinetic energy, and one for potential energy.

To understand black-body radiation, consider a cuboid of dimensions Lx × Ly × Lz. Ap-
plying periodic boundary condition, discrete plane-wave modes exist in the cuboid. In the k
space, each mode occupies a volume of

(2π)3/(LxLyLz) = (2π)3/V

where V is the volume of the cuboid. Hence, in a spherical shell in the k space, the number
of modes is

∆N = 2
V 4πk2∆k

(2π)3
(A10)

The 2 factor is due to two polarizations per mode. For photons, k = ω/c, and the above can
be rewritten as density of states per unit volume by dividing the above by V ,

∆N =
ω2∆ω

π2c3
(A11)

We can convert the above into energy density since we know the energy per each quantum
harmonic oscillator, or

∆E = ∆N n̄~ω =
ω2∆ω

π2c3
~ω

e~ω/kBT − 1
(A12)

Consequently, the energy density per unit frequency is

U(ω) =
dE

dω
=

ω2

π2c3
~ω

e~ω/kBT − 1
(A13)

Since a black-body is in thermal equilibrium, the energy it radiates is proportional to the
energy density. Hence, the black-body radiation spectrum is proportional to the above ex-
pression. It indicates that the radiation from a black-body is small when the frequency is
small, and increases as the frequency increases, but diminishes again when the frequency is
high, in agreement with experimental observation. The initial increase with ω is because the
density of states increases with ω. However, as ~ω increases, the quantization energy level
increases in the quantum harmonic oscillator. According to Boltzmann’s law, only the low
photon number states are likely to be occupied, decreasing the average number of photons
with high ω. This gives rise to the decreased radiation with increasing frequency. Moreover,
the frequency where the peak radiation occurs also becomes higher (shorter wavelength) as
the temperature increases.

When ~→ 0, the above becomes

U(ω) =
ω2

π2c3
kBT

The above is Rayleigh-Jeans law of radiation. It predict large radiation with increasing
frequency called the ultra-violet catastrophe. This problem is remedied by the discovery of
Planck’s law.
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Figure A1: According to Planck’s radiation law, body of different temperature will radiate
with different colors with increasing order of hotness from red to green to blue.

When ~ω � kBT , or when the temperature is low,

U(ω) ≈ ~ω3

π2c3
e−~ω/kBT (A14)

This is Wien’s law.
The average energy per unit volume is obtained by integrating over all frequencies

U =

∫ ∞
0

U(ω)dω =
~

π2c3

∫ ∞
0

ω3dω

e~ω/kBT − 1

=
~

π2c3

(
kBT

~

)4 ∫ ∞
0

x3dx

ex − 1
(A15)

It can be shown that (Gradshteyn and Ryzhik, p. 326, Eq. 17)∫ ∞
0

x3dx

ex − 1
=
π4

15
(A16)

Then

U =
π2

15c3
(kBT )4

~3
(A17)

The above is the Stefan-Boltzmann law.
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Figure A2: Different radiation laws are the special case of the Planck’s radiation law, which
takes into account of quantum mechanics.

B Vacuum Fluctuation and Casimir Force

The energy of a harmonic oscillator is given by

En = ~ω
(
n+

1

2

)
(B1)

The vacuum state corresponds to n = 0 is equivalent to the absence of electric field or photons.
It can be shown that even though the mean of electric field is zero for the vacuum state, the
mean square of the deviation of the electric field is non-zero. This is known as vacuum
fluctuation. Even in vacuum with “no” electric field or photon, there is always a fluctuating
electric field!

This fluctuating electric field between two parallel plates gives rise to a force known as the
Casimir force. Consider a parallel plate resonator making up of two square plates of length L
separated by distance d and then terminated by conducting walls on the side. The resonant
frequencies are given by

ωmnp = c
[(mπ

L

)2

+
(nπ
L

)2

+
(pπ
d

)2]1/2
(B2)
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Figure B1: In the model for the calculation of Casimir force, we assume two square metallic
plates enclosed by a square L × L cylinder. The two plates are freely movable within the
square cylinder, and we calculate the work done needed to bring the two metallic plates from
infinite separation to a separation d.

The zero point energy (ZPE) of the modes in the parallel plate resonator is given by

E0(d) =
∑
m,n,p

′
(2)

1

2
~ωmnp (B3)

= ~c
∑
m,n,p

′[(mπ
L

)2

+
(nπ
L

)2

+
(pπ
d

)2]1/2
(B4)

≈ ~c
(
L

π

)2 ∞∑
p=0

′ ∫ ∞
0

dkx

∫ ∞
0

dky

[
k2
x + k2

y +
(pπ
d

)2]1/2
(B5)

When L→∞, the modes in the m and n directions become indenumerable, the summation
over m and n can be replaced by integrals. The above has a physical picture of a plane wave
bouncing between two infinitely large parallel plates. The modes can be decomposed into TE
and TM to z modes. But when p = 0, the TE modes does not exist as it is shorted out. Then
only TM mode exists. For all the other p’s, both TE and TM modes exist. Hence, there are
two polarizations for each mode except for the first mode. That explains the factor of 2 in the
above summation. Therefore, the prime in the above indicates that the first term is weighted
by a factor of 1/2. If the plates are very far apart, we have

E0(∞) = ~c
(
L

π

)2
d

π

∫ ∞
0

dkx

∫ ∞
0

dky

∫ ∞
0

dkz [k2
x + k2

y + k2
z ]1/2 (B6)

The potential energy of the system is the energy needed to move the plates from infinity to



Quantization of Classical Fields 209

separation d. Hence, the potential energy

U(d) = E0(d)− E0(∞)

= ~c
(
L

π

)2
{ ∞∑
p=0

′ ∫ ∞
0

dkx

∫ ∞
0

dky

[
k2
x + k2

y +
(pπ
d

)2]1/2
− d

π

∫ ∞
0

dkx

∫ ∞
0

dky

∫ ∞
0

dkz [k2
x + k2

y + k2
z ]1/2

} (B7)

Converting the above into cylindrical coordinates, and noting that we are integrating only
over a quadrant of the plane, we have

U(d) =
π

2
~c
(
L

π

)2
{ ∞∑
p=0

′ ∫ ∞
0

dη η
[
η2 +

(pπ
d

)2]1/2
− d

π

∫ ∞
0

dζ ′
∫ ∞

0

dη η(η2 +ζ ′2)1/2

}
(B8)

By letting η2 = (πd )2w, and ζ ′ = ζπ/d, the above becomes

U(d) =
π

4
~c
(
L

π

)2 (π
d

)3
[ ∞∑
p=0

′ ∫ ∞
0

dw(w + p2)1/2 −
∫ ∞

0

dζ

∫ ∞
0

dw(w + ζ2)1/2

]

=
π

4
~c
(
L

π

)2 (π
d

)3
[ ∞∑
p=0

′

F (p)−
∫ ∞

0

dζF (ζ)

]
(B9)

where

F (ζ) =

∫ ∞
0

dw(w + ζ2)1/2 (B10)

The above derivation follows that of Milonni and Shih, and also discussed in many text books
including Milonni, and Gerry and Knight. The above consists of divergent integrals and
summation. But the integrals and summation can be tapered by windowing so that they
will converge. The window can be chosen so that the values of F (ζ) and its derivatives are
not altered so that the Euler-Maclaurin formula can be used to estimate the difference in the
above.

In general, the Euler-Maclaurin formula estimates the difference between an integral and
its trapezoidal rule approximation. This difference is given by

∆ =

{
1

2

[
F (0) + F (N)

]
+

N−1∑
p=1

F (p)−
∫ N

0

dζ F (ζ)

}
(B11)

=

K∑
k=1

B2k

2k!

[
F (2k−1)(N)− F (2k−1)(0)

]
+R (B12)
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When the integrand vanishes at the upper limit of integration, it simplifies to

∆ =

{
1

2

[
F (0)

]
+

∞∑
p=1

F (p)−
∫ ∞

0

dζ F (ζ)

}
(B13)

=

K∑
k=1

B2k

2k!

[
−F (2k−1)(0)

]
+R (B14)

where R is the residual error which can be made small by choosing K properly, and B1 = − 1
2 ,

B2 = 1
6 , B3 = 0, B4 = − 1

30 , · · · . The superscript 2k − 1 indicates derivatives with respect to
the argument of the function. Consequently,

∆ = − 1

12
F ′(0) +

1

720
F ′′′(0) (B15)

With F ′(0) = 0 and F ′′′(0) = −4, then

∆ =
4B4

4!
= − 1

180
(B16)

and

U(d) = − π2~c
720d3

L2 (B17)

Since this is the work done in bringing two plates from infinity to a separation d apart, the
force per unit area on the plate is

F (d) = U ′(d) = − π2~c
240d4

(B18)

which is the Casimir force due to zero point energy or vacuum fluctuation.



Chapter 13

Schrödinger Wave Fields∗

13.1 Introduction

We notice that electromagnetic field can be viewed as a collection of photons each with an
field attached. These photons collectively form the coherent state that produces a wave field
that is analogous to the classical electromagnetic wave field. Photons are bosons whose wave
field satisfies Maxwell’s equations.

Similarly, if a boson wavefunction satisfies Schrödinger equation, a collection of bosons
gives rise to a wave field that satisfies Schrödinger equation. Similarly, a collection of fermions
gives rise to a wave field that satisfies Schrödinger equation if each individual particle wave-
function satisfies the same equation. We will call such fields Schrödinger wave fields.

We have seen that the number of bosons in an electromagnetic wave field can be tracked by
the annihilation and creation operators; similar operators are needed for tracking the particle
of a Schrödinger wave field. The wave field can be a collection of bosons or a collection of
fermions. Eventually, the bookkeeping of the many-particle system becomes simpler.

For Schrödinger equation, this is the second quantization. The first quantization was the
discovery that electrons can be associated with a wavefunction, and the trapped modes in
potential well are quantized. The second quantization refers to the fact that the Schrödinger
wave field, which can be treated as a continuum, can be made granular or quantized. This is
the advanced way of expressing the wave-particle duality concept inherent in a wave field.∗

13.2 Fock Space for Fermions

For fermions, each eigenmode or eigenstate is either occupied or unoccupied. In general, there
will be infinitely many modes that the fermions can occupy. We could denote a two-particle
state as

|ψ2p〉 = | · · · , 0, 1m, 0, · · · , 0, 1v, 0, · · · 〉 (13.2.1)

∗This chapter can be skipped on first reading.
∗The quantization of classical fields is also known as first quantization for them.

211



212 Quantum Mechanics Made Simple

where only the m and v modes are occupied and the rest of the modes are unoccupied. The
notation above is cumbersome, and it is common to denote the two-particle fermion Fock
state as

|ψ2p〉 = |m, v〉 (13.2.2)

where for fermions, it is necessary that

|m, v〉 = −|v,m〉 (13.2.3)

We define a fermion creation operator such that

b̂†k|m,n〉 = |k,m, n〉 (13.2.4)

The newly created particle always occupies the first space in the Fock state vector. By
definition then

b̂†l b̂
†
k| · · · 〉 = |l, k, · · · 〉 (13.2.5)

b̂†k b̂
†
l | · · · 〉 = |k, l, · · · 〉 = −|l, k, · · · 〉 = −b̂†l b̂

†
k| · · · 〉 (13.2.6)

Therefore

b̂†k b̂
†
l + b̂†l b̂

†
k = 0 (13.2.7)

Similarly, we can show that

b̂k b̂l + b̂lb̂k = 0 (13.2.8)

or that the above is the Hermitian conjugate of (13.2.7). To show (13.2.8) more rigorously,
we start with a fermion Fock state

|ψ〉 = | · · · , l, k, · · · 〉 (13.2.9)

This state acquires a minus sign when we permute two of the particles. Finally, we can have
a state such that

|ψF 〉 = |l, k, · · · 〉 = −|k, l, · · · 〉 (13.2.10)

An annihilation operator can be defined such that

b̂l|l, k, · · · 〉 = |k, · · · 〉 (13.2.11)

It can be shown that

b̂k b̂l|ψF 〉 = b̂k b̂l|l, k, · · · 〉 = b̂k|k, · · · 〉 = | · · · 〉 (13.2.12)

Similarly,

−b̂lb̂k|ψF 〉 = b̂lb̂k|k, l, · · · 〉 = b̂l|l, · · · 〉 = | · · · 〉 (13.2.13)
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Therefore,

b̂k b̂l + b̂lb̂k = 0 (13.2.14)

The above equations (13.2.7) and (13.2.14) imply that if k = l,

b̂†k b̂
†
k = 0 (13.2.15)

b̂k b̂k = 0 (13.2.16)

It means that no two particles can be created in the same mode k or no two particles can be
annihilated from the same mode k.

By the same token, we can show that for k 6= l,

b̂†k b̂l + b̂lb̂
†
k = 0 (13.2.17)

When k = l, we have a state |k, · · · 〉 and then

(b̂†k b̂k + b̂k b̂
†
k)|k, · · · 〉 = b̂†k b̂k|k, · · · 〉+ b̂k b̂

†
k|k, · · · 〉

= b̂†k| · · · 〉+ 0|k, · · · 〉 = b̂†k| · · · 〉 = |k, · · · 〉
= Î|k, · · · 〉 (13.2.18)

In conclusion,

b̂†k b̂l + b̂lb̂
†
k = δklÎ (13.2.19)

In summary, [
b̂†k, b̂l

]
+

= b̂†k b̂l + b̂lb̂
†
k = δklÎ (13.2.20)[

b̂†k, b̂
†
l

]
+

= b̂†k b̂
†
l + b̂†l b̂

†
k = 0 (13.2.21)[

b̂k, b̂l

]
+

= b̂k b̂l + b̂lb̂k = 0 (13.2.22)

where [A,B]+ = AB + BA. These commutation relations, as we shall see, do wonders in
simplifying the book-keeping of many particle problems.

13.3 Field Operators

Just as in the case of electromagnetic field operators that represent many photons which
are bosons, we can define field operators for fermions and bosons in general. A one-particle
Schrödinger field operator is defined such that

ψ̂(r) =
∑
j

b̂jφj(r) (13.3.1)
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where φj is an eigenmode from a complete set of orthonormal functions. It may or may not be
the j-th eigenstate of the quantum system governed by the one-particle Schrödinger equation.
The above field operator acts on a state vector in the Fock space. For instance,

ψ̂(r)|m〉 = ψ̂(r)b̂†m|0〉

=
∑
j

φj(r)b̂j b̂
†
m|0〉

=
∑
j

φj(r)(δjm − b̂†mb̂j)|0〉

= φm(r)|0〉 (13.3.2)

where the commutation relation (13.2.20) has been used. Notice that the above field operator,
when operating on a Fock vector with a m-th mode occupied, produces a vector tagged with
the spatial dependence of the m-th eigenmode.

After using the completeness property of the orthonormal basis, plus the use of commu-
tation relations for the annihilation and creation operators, the field operator can be shown
to satisfy the following commutation relations:[

ψ̂†(r), ψ̂(r′)
]

+
= ψ̂†(r)ψ̂(r′) + ψ̂(r′)ψ̂†(r) = δ(r− r′) (13.3.3)[

ψ̂†(r), ψ̂†(r′)
]

+
= ψ̂†(r)ψ̂†(r′) + ψ̂†(r′)ψ̂†(r) = 0 (13.3.4)[

ψ̂(r), ψ̂(r′)
]

+
= ψ̂(r)ψ̂(r′) + ψ̂(r′)ψ̂(r) = 0 (13.3.5)

As an extension, one can define two-particle field operator

ψ̂ (r1, r2) =
1√
2

∑
n1,n2

b̂n2
b̂n1

φn1
(r1)φn2

(r2) (13.3.6)

where the factor 1/
√

2 is needed for normalization. Here, φn1 (r1) and φn2 (r2) may or may
not be eigenstates of the one-particle Schrödinger equation. The requirements on them are
that they are complete and orthonormal. In the above, the n1 = n2 terms vanish because
b̂nb̂n = 0. It can be shown easily that

ψ̂ (r1, r2) |l,m〉 = ψ̂ (r1, r2) b̂†l b̂
†
m |0〉 =

1√
2

[φl (r1)φm (r2)− φl (r2)φm (r1)] |0〉

= φlm(r1, r2)|0〉 (13.3.7)

where φlm(r1, r2) is a two-particle wave function satisfying the symmetry requirements for
fermion particles. It is to be noted that the above is zero when r1 = r2. It is a consequence
of the field operator operating on the two-particle Fock state, and the commutation relations
for fermions. A three-particle field operator is defined to be

ψ̂ (r1, r2, r3) =
1√
3!

∑
n1,n2,n3

b̂n3 b̂n2 b̂n1φn1 (r1)φn2 (r2)φn3 (r3) (13.3.8)
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In the above, none of the n1, n2, n3 can be repeated for the reasons of (13.2.15) and (13.2.16).
Then, using the commutation relations derived in the previous section, (13.2.20) to (13.2.22),
it can be shown that

ψ̂ (r1, r2, r3) |l,m, n〉 = ψ̂ (r1, r2, r3) b̂†l b̂
†
mb̂
†
n |0〉

=
1√
3!

[φl (r1)φm (r2)φn (r3) + φl (r2)φm (r3)φn (r1)

+ φl (r3)φm (r1)φn (r2)− φl (r1)φm (r3)φn (r2)

−φl (r2)φm (r1)φn (r3)− φl (r3)φm (r2)φn (r1)] |0〉
= φlmn(r1, r2, r3)|0〉 (13.3.9)

where φlmn(r1, r2, r3) is the three-particle wave function with the requisite symmetry require-
ments. In general, an N -particle field operator is

ψ̂ (r1, r2, · · · , rN ) =
1√
N !

∑
n1,n2,··· ,nN

b̂nN · · · b̂n2
b̂n1

φn1
(r1)φn2

(r2) · · ·φnN (rN ) (13.3.10)

In the above sum, only terms where n1, n2, · · · , nN are distinct are contributing for the same
reason given in (13.3.8). It is seen that

ψ̂NP (r1, r2, · · · , rN ) =
1√
N !

ψ̂1P (rN ) · · · ψ̂1P (r2) ψ̂1P (r1) (13.3.11)

where ψ̂1P is a one-particle field operator while ψ̂NP is the N -particle field operator. However,
the used of such factorized form has to be handled with caution, as each one-particle operator
has to operate on distinct modes in order for the product of factors to be non-zero.

A general Fock state for N fermion particles can be written as

|ΦN 〉 = b̂†n1
b̂†n2

b̂†n3
· · · b̂†nN |0〉 = |n1, n2, n3, · · · , nN 〉 (13.3.12)

In the above, the state vector changes sign when any two of the annihilation operators swap
position, and that the state vector is zero if any two of the modes are identical.

When the Fock state is operated on by the N -particle field operator, the coordinate space
representation of the N -particle fermion state is obtained as shown by (13.3.7) and (13.3.9).
This approach avoids the cumbersome use of Slater determinant in the book-keeping of the
N -particle fermion states. In general

ψ̂NP (r1, r2, · · · , rN ) |ΦN 〉 = φN (r1, r2, · · · , rN ) |0〉 (13.3.13)

The above is an elegant and compact way to express an N -particle fermion wave function.

13.4 Similarity Transform

It is prudent to note from the above that one can change between coordinate space basis
and Fock space basis via the algebra shown. This allows us to effect a change of basis for a
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complex quantum system. Some quantum systems, when expressed in the Fock space basis, is
a lot simpler than the coordinate space basis. This was first shown for electromagnetic field.
It can be shown for other quantum fields. Hence, it is worthwhile to review the mathematics
of similarity transform next.

We can view the change of basis as a similarity transform when we change from eigenfunc-
tion space or coordinate space representation to Fock space representation. Given a matrix
equation

A · x = λx (13.4.1)

we can define a new representation for the unknowns as

x = S · y (13.4.2)

In the above, S is unitary since the length of the vectors does not change. The above equation
becomes

A · S · y = λS · y (13.4.3)

Multiplying the above by S
†
, we have

S
† ·A · S · y = λS

† · S · y = λy (13.4.4)

where the unitary property of the S operator has been used. Hence,

As · y = λy (13.4.5)

where

As = S
† ·A · S (13.4.6)

Equation (13.4.6) is in the form of a similarity transform.

13.5 Additive One-Particle Operator

We can consider a simple identical many particle Hamiltonian where the particles do not
interact with each other, say via the Coulomb potential. For instance, for fermions, the only
way they interact is via Pauli’s exclusion principle. An example of such a Hamiltonian for N
particles, in coordinate space representation, is

Ĥr =

N∑
i=1

Ĥri (13.5.1)

where

Ĥri = − ~2

2m
∇2
i + V (ri) (13.5.2)



Schrödinger Wave Fields 217

As an example, consider the three particle case. The three-particle wavefunction in coordinate
representation is

φlmn(r1, r2, r3) =
1√
3!

[φl (r1)φm (r2)φn (r3) + φl (r2)φm (r3)φn (r1)

+ φl (r3)φm (r1)φn (r2)− φl (r1)φm (r3)φn (r2)

−φl (r2)φm (r1)φn (r3)− φl (r3)φm (r2)φn (r1)] (13.5.3)

If the eigenmodes above are the eigenmodes of the Ĥri operator, then

Ĥrφlmn(r1, r2, r3) =

N∑
i=1

Ĥriφlmn(r1, r2, r3) = (El + Em + En)φlmn(r1, r2, r3) (13.5.4)

The above approach gets unwieldy as the number of particles increases. However, if we were
to test the above equation with φ∗l′m′n′(r1, r2, r3) and integrate over space, we have∫

dr1dr2dr3φ
∗
lmn(r1, r2, r3)Ĥrφlmn(r1, r2, r3) = (El + Em + En)δl′lδm′mδn′n (13.5.5)

The above indicates that the matrix representation of Ĥr is diagonal and very simple despite
the complicated nature of the wave functions. It signals an alternative simpler representation
of the N -particle Hamilton. This simplication can be achieved by the change of basis using
the identity in (13.3.9) to obtain that

〈n′,m′, l′|Ĥ|l,m, n〉 = (El + Em + En)δl′lδm′mδn′n = 〈n′,m′, l′|(El + Em + En)|l,m, n〉
(13.5.6)

where

Ĥ =

∫
dr1dr2dr3ψ̂

†(r1, r2, r3)Ĥrψ̂(r1, r2, r3) (13.5.7)

By inspection, if we let

Ĥ =
∑
p

Epb̂
†
pb̂p (13.5.8)

it will have the same matrix representation as (13.5.6) above. But we can also derive the
above by a lengthier exercise starting with (13.5.7).

In general, for a simpler approach, we can perform a change of basis or similarity transform
on the original Hamiltonian. The new Hamiltonian is

Ĥ =

∫ N∑
i=1

ψ̂†NP (r1, r2, · · · , rN ) Ĥriψ̂NP (r1, r2, · · · , rN ) dr1dr2 · · · drN (13.5.9)

The operator above now acts on a vector in the Fock space, and transforms it to another
vector in the same space.
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Equation (13.5.9) can be written, after using (13.3.11), as

Ĥ =
1

N !

N∑
i=1

∫
ψ̂†1P (rN ) · · · ∼ · · · ψ̂†1P (r1)

[∫
driψ̂

†
1P (ri) Ĥriψ̂1P (ri)

]
ψ̂1P (r1) · · · ∼ · · · ψ̂1P (rN ) dr1 · · · ∼ · · · drN (13.5.10)

where the ∼ sign implies that ri is excluded from the sequence. We can move ψ̂†1P (ri) and

ψ̂1P (ri) as there are an even number of sign change as we anti-commute the field operators
inward.

13.5.1 Three-Particle Case

It is quite complex to sort out the algebra of the above system. Much insight, however,
can be gotten by studying a simpler three-particle case. In this case, a typical term of the
transformed Hamiltonian is

Ĥ =
1

3!

∫
ψ̂†1P (r3) ψ̂†1P (r2)

[∫
dr1ψ̂

†
1P (r1) Ĥr1ψ̂1P (r1)

]
ψ̂1P (r2) ψ̂1P (r3) dr2dr3 + · · · (13.5.11)

where the + · · · above refers to other two terms where ri = r2 and ri = r3, and ri here refers
to the coordinates for the term inside the square brackets.

The space-dependent parts involving φni(ri) in the field operators can be grouped together
and the spatial integrations can be performed first. These modes are orthonormal giving rise
to δn2n′2

and δn3n′3
which can be used to reduce double summations into single summations.

Finally, one obtains

Ĥ =
1

6

∑
n2,n3

b̂†n3
b̂†n2

∑
n′1,n1

b̂†n′1
H

(1)
n′1,n1

b̂n1

 b̂n2
b̂n3

+ · · · (13.5.12)

The general case where φn1
(r1) is not an eigenstate of the Hamiltonian Ĥr1 is assumed here.

Hence,

H
(1)
n′1,n1

= 〈φn′1 |Ĥr1|φn1〉 (13.5.13)

In the event that φn1
(r1) is an eigenstate of Ĥr1, the above becomes

H
(1)
n′1,n1

= En1δn′1n1
(13.5.14)

To evaluate the action of the above operator in (13.5.12) on the three-fermion-particle

state |l,m, n〉 = b̂†l b̂
†
mb̂
†
n|0〉, one needs to first show that

b̂n3
|l,m, n〉 = b̂n3

b̂†l b̂
†
mb̂
†
n|0〉

=
(
δnn3 b̂

†
l b̂
†
m + δln3 b̂

†
mb̂
†
n + δmn3 b̂

†
nb̂
†
l

)
|0〉 (13.5.15)
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Figure 13.1: The three annihilation operators b̂n1 b̂n2 b̂n3 acting on the three-particle state
|l,m, n〉 produces six threads that eventually gives rise to six terms.

Next, one can show that

b̂n2
b̂n3
|l,m, n〉 =

(
δln3

δmn2
b̂†n − δln3

b̂†mδnn2
− δln2

δmn3
b̂†n

+b̂†l δmn3
δnn2

+ δln2
b̂†mδnn3

− b̂†l δmn2
δnn3

)
|0〉 (13.5.16)

Finally,

b̂n1
b̂n2

b̂n3
|l,m, n〉 = (δln3

δmn2
δnn1

− δln3
δmn1

δnn2
− δln2

δmn3
δnn1

+δln1
δmn3

δnn2
+ δln2

δmn1
δnn3

− δln1
δmn2

δnn3
) |0〉 (13.5.17)

A total of six terms is found. In the above b̂n3 , operating on the three-particle state, produces

three terms each of which is a two-particle state as shown in Figure 13.1. Next, b̂n2
operating

on them will produce two terms per each term of the two-particle state, producing a net of
six terms of one-particle states. The final operation b̂n1

produces one term for each particle.

In general, if we start with an N -particle state, the operation of b̂n1 · · · b̂nN on it will produce
N ! terms.

The b̂† operators in (13.5.12) anti-commute with each other. Hence, b̂†n3
b̂†n2

can be moved

to the right of the H
(1)
n′1,n1

element, together with the summations. Therefore, we finally need

to evaluate ∑
n2,n3

b̂†n3
b̂†n2

b̂n1 b̂n2 b̂n3 |l,m, n〉 (13.5.18)

The above can be shown to evaluate to∑
n2,n3

b̂†n3
b̂†n2

b̂n1 b̂n2 b̂n3 |l,m, n〉 = 2
(
δnn1 b̂

†
l b̂
†
m + δln1 b̂

†
mb̂
†
n + δmn1

b̂†nb̂
†
l

)
|0〉

= 2b̂n1 b̂
†
l b̂
†
mb̂
†
n|0〉 = 2b̂n1

|l,m, n〉 (13.5.19)

The first equality above can be obtained by using (13.5.17). The second equality follows from
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(13.5.15). The above can be generalized to the N -particle case yielding†∑
n2,··· ,nN

b̂†nN · · · b̂
†
n2
b̂n1 b̂n2 · · · b̂nN |l1, · · · , lN 〉 = (N − 1)!b̂n1 |l1, · · · , lN 〉 (13.5.20)

Consequently,

Ĥ|l,m, n〉 =
1

3

∑
n′1,n1

b̂†n′1
H

(1)
n′1,n1

b̂n1 |l,m, n〉+ · · · (13.5.21)

The other two terms indicated by the + · · · would contribute to exactly the same expression
as they are from indistinguishable particles. Finally, we have

Ĥ|l,m, n〉 =
∑
n′1,n1

b̂†n′1
H

(1)
n′1,n1

b̂n1
|l,m, n〉 (13.5.22)

In general, the additive one-particle operator in Fock space is

Ĥ =
∑
n′,n

b̂†n′H
(1)
n′,nb̂n (13.5.23)

The above can be used for the N -particle case as long as they are indistinguishable. It can
be shown to yield the same matrix representation using Fock state vectors, compared to the
case in coordinate space representation. It can be easily validated using the two-particle or
three-particle state vectors.

For the case when the one-particle eigenstates are also the eigenstates of the Ĥri operator,
the above matrix becomes diagonal yielding,

Ĥ =
∑
n

Enb̂
†
nb̂n (13.5.24)

The above means that if we have an N -particle fermion field, it can be represented by the
physics of one-particle Hamiltonian if the eigenstates chosen for the similarity transform are
also the eigenstates of the one-particle Hamiltonian. Also, the above Hamiltonian is very
similar to the Hamiltonian for photons derived in the previous chapter, except that photons
are bosons and the above derivation is for fermions. A similar derivation for bosons shows
that the Hamiltonian is similar to the above.

The above Hamiltonian (13.5.24) does not distinguish between one particle or N particles.
This difference of the quantum systems is expressed by the Fock states of the particles.

13.6 Additive Two-Particle Operator

In general, the N particles in a Schrödinger wave field will interact with each other. They may
interact pair-wise, for instance, via Coulomb potential other than just the Pauli’s exclusion

†For the fermion case, since n1, · · · , nN are distinct, we can anti-commute the operators to arrange them
in pairs of b̂†b̂ and arrive at (13.5.19) and (13.5.20) more succinctly.
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principle. An example of an additive two particle operator in coordinate space is

V (r1, r2) =
e2

4πε0 |r1 − r2|
(13.6.1)

This will be part of a two-particle Hamiltonian

Ĥr(r1, r2) = − ~2

2m

(
∇2

1 +∇2
2

)
+ V (r1, r2) (13.6.2)

When N -particle Hamiltonian is considered, the Coulomb interaction appears as

V =
∑
i<j

V (ri, rj) =
1

2

∑
i6=j

V (ri, rj) (13.6.3)

For N particles, there are N(N−1) terms in the above summations. Again, we can transform
the above from coordinate space representation to Fock-space representation as before arriving
at

V̂ =
1

2

N∑
i=1

N∑
j=1,j 6=i

1

N !

∫
ψ̂†1P (rN ) · · · ∼ · · · ψ̂†1P (r1)

[∫
dridrjψ̂

†
1P (ri)ψ̂

†
1P (rj)V (ri, rj)ψ̂1P (ri)ψ̂1P (rj)

]
ψ̂1P (r1) · · · ∼ · · · ψ̂1P (rN ) dr1 · · · ∼ · · · drN (13.6.4)

where the ∼ indicates that ri and rj are excluded from the sequence. Without loss of gener-
ality, we can focus on the term where ri = r1 and rj = r2. Then, the above becomes

V̂ =
1

2N !

∫
ψ̂†1P (rN ) · · · ψ̂†1P (r3)

[∫
dr1dr2ψ̂

†
1P (r2)ψ̂†1P (r1)V (r1, r2)ψ̂1P (r1)ψ̂1P (r2)

]
ψ̂1P (r3) · · · ψ̂1P (rN ) dr1 · · · drN + · · ·

(13.6.5)

where + · · · above implies the rest of the terms; there are altogether N(N − 1) terms. Per-
forming the dr1 · · · drN integrations first, making use of mode orthonormality, we arrive at

V̂ =
1

2N !

∑
n3,··· ,nN

b̂†nN · · · b̂
†
n3 ∑

n′1,n1,n′2,n2

b̂†n′2
b̂†n′1

V
(1,2)
n′1,n

′
2,n1,n2

b̂n1

 b̂n2
· · · b̂nN + · · · (13.6.6)

where

V
(1,2)
n′1,n

′
2,n1,n2

=

∫
dr1dr2φ

∗
n′1

(r1)φ∗n′2(r2)V (r1, r2)φn1
(r1)φn2

(r2) (13.6.7)
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The above needs to operate on an N -particle Fock state, namely,

V̂ |l1, · · · , lN 〉 =
1

2N !

∑
n3,··· ,nN

b̂†nN · · · b̂
†
n3 ∑

n′1,n1,n′2,n2

b̂†n′2
b̂†n′1

V
(1,2)
n′1,n

′
2,n1,n2

b̂n1
b̂n2

 b̂n3
· · · b̂nN |l1, · · · , lN 〉+ · · ·

(13.6.8)

The right-most term that acts on the Fock state is of the form

b̂n1 b̂n2 · · · b̂nN |l1, · · · , lN 〉 (13.6.9)

The above yields N ! terms similar to (13.5.17). But b̂†nN · · · b̂
†
n3

commutes with b̂†n2
b̂†n1

in

(13.6.6) above. We can then move b̂†nN · · · b̂
†
n3

to the right of V
(1,2)
n′1,n

′
2,n1,n2

. Then we need to

evaluate∑
n3,··· ,nN

b̂†nN · · · b̂
†
n3
b̂n1

b̂n2
· · · b̂nN |l1, · · · , lN 〉 = (N − 2)!b̂n1

b̂n2
|l1, · · · , lN 〉 (13.6.10)

The above equality can be proved by induction from the three-particle case or from equations
(13.5.19) and (13.5.20). As a result,

V̂ |l1, · · · , lN 〉 =
1

2N(N − 1)

∑
n′1,n1,n′2,n2

b̂†n′2
b̂†n′1

V
(1,2)
n′1,n

′
2,n1,n2

b̂n1
b̂n2
|l1, · · · , lN 〉+ · · · (13.6.11)

There are N(N −1) terms of the similar kind in the + · · · above. Summing them up, we have

V̂ |l1, · · · , lN 〉 =
1

2

∑
n′1,n1,n′2,n2

b̂†n′2
b̂†n′1

V
(1,2)
n′1,n

′
2,n1,n2

b̂n1
b̂n2
|l1, · · · , lN 〉 (13.6.12)

In general, the additive two-particle operator in an N -particle fermion field is given by

V̂ =
1

2

∑
n′1,n1,n′2,n2

b̂†n′2
b̂†n′1

V
(1,2)
n′1,n

′
2,n1,n2

b̂n1
b̂n2

(13.6.13)

The above can be easily validated to produce the same matrix representation compared to
the coordinate representation using the two-particle or three-particle state vectors.

The above derivations for fermions can be repeated for the boson case. In this case, we
will have a field of bosons. It is pleasing that by starting out with the N -particle coordi-
nate space representation of the Schrödinger equation, one arrives at a much simpler Fock
space representation of the same equation. It allows one to treat N -particle problems more
succinctly using such a representation.
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13.7 More on Field Operators

The above shows that the one-particle additive operator is independent of the number of
particles. So what distinguishes one-particle quantum system from a two-particle one is in
the Fock state: the first one will have a Fock state for one particle while the latter will have
a Fock state for two particles.

A general one-particle Fock state is

|ψ〉 =
∑
µ

cµb̂
†
µ|0〉 (13.7.1)

When the one-particle field operator acts on the above, it projects the coordinate space
representation of the one-particle wavefunction. Namely,

ψ̂(r)|ψ〉 =
∑
µ

cµφm(r)|0〉 = ψ(r)|0〉 (13.7.2)

The above one-particle state is in a linear superposition of different eigenstates. Hence, it can
constitute a wave packet.‡

Also, from (13.3.1), we can easily show that

b̂†µ =

∫
φµ(r)ψ̂†(r)dr (13.7.3)

On combining with (13.7.3), we have

|ψ〉 =
∑
µ

cµ

∫
φµ(r)ψ̂†(r)dr|0〉

=

∫ [∑
µ

cµφµ(r)

]
ψ̂†(r)dr|0〉

=

∫
f(r)ψ̂†(r)dr|0〉 (13.7.4)

Therefore, a general one-particle state can be written as a linear superposition of the one-
particle field operator ψ̂†(r) weighted by f(r). It is clear that f(r) satisfies the one-particle
Schrödinger equation.

For a general two-particle state in Fock space,

|ψ〉 =
∑
µ1,µ2

cµ1,µ2 b̂
†
µ1
b̂†µ2
|0〉 (13.7.5)

upon substituting (13.7.3) into the above, we have

|ψ〉 =

∫ (∑
µ1µ2

φµ1
(r1)φµ2

(r2)cµ1,µ2

)
ψ̂†(r1)ψ̂†(r2)dr1dr2|0〉

=

∫
f(r1, r2)ψ̂†(r1)ψ̂†(r2)dr1dr2|0〉 (13.7.6)

‡See the appendix of Chapter 4 for a discussion of wave packets.
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where

f(r1, r2) =
∑
µ1,µ2

φµ1
(r1)φµ2

(r2)cµ1,µ2
. (13.7.7)

For fermions, it can be easily shown, using the commutation relations for the field operators,
that

f (r1, r2) = −f (r2, r1) (13.7.8)

The above implies that cµ1,µ2 = −cµ2,µ1 . The above satisfies the two-particle Schrödinger
equation. It can be generalized to N particles, yielding

|ψ〉 =

∫
f (r1, r2, · · · , rN ) ψ̂† (r1) ψ̂† (r2) · · · ψ̂† (rN ) dr1dr2 · · · drN |0〉 (13.7.9)

13.8 Boson Wave Field

The results for fermion wave field in the previous section can also be derived for boson wave
field. The difference is that more than one boson can occupy a given state: The Pauli exclusion
principle does not apply to bosons. A boson state involving two modes can be denoted as:

|ψ〉 = |nm, nv〉 (13.8.1)

where there are nm particles in mode m, and nv particles in mode v. Since ordering is
unimportant, it is necessary that

|nm, nv〉 = |nv, nm〉 (13.8.2)

A boson creation operator can be defined such that

â†k|nk, nm, nv〉 = Cnk+1|nk + 1, nm, nv〉 (13.8.3)

It raises the number of bosons in state k by one. By definition,

â†l â
†
k|nk, nl, · · · 〉 = Cnk+1Cnl+1|nk + 1, nl + 1, · · · 〉 (13.8.4)

â†kâ
†
l |nl, nk, · · · 〉 = Cnl+1Cnk+1|nl + 1, nk + 1, · · · 〉 = â†l â

†
k|nk, nl, · · · 〉 (13.8.5)

The last equality follows since ordering is unimportant. Consequently,

â†kâ
†
l − â

†
l â
†
k = 0 (13.8.6)

Similarly, one can define annihilation operators for bosons that have the opposite effect as
the creation operators. Hence, going through a similar process, one also has

âkâl − âlâk = 0 (13.8.7)

From definition,

â†|n〉 = Cn+1|n+ 1〉 (13.8.8)

â|n〉 = Bn|n− 1〉 (13.8.9)
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Furthermore, from (13.8.9), we have

〈n+ 1|â†|n〉 = Cn+1, C∗n+1 = 〈n|â|n+ 1〉 = Bn+1 (13.8.10)

Then, we can show that

â†l âk|nk, nl, · · · 〉 = C∗nkCnl+1|nk − 1, nl + 1, · · · 〉 (13.8.11)

âkâ
†
l |nl, nk, · · · 〉 = C∗nl+1Cnk |nl + 1, nk − 1, · · · 〉 (13.8.12)

If Cn is a real number, then when l 6= k,

âkâ
†
l − â

†
l âk = 0 (13.8.13)

For the case when l = k, we can drop the subscripts k and l and look at

â†â|n〉 = C2
n|n〉 (13.8.14)

ââ†|n〉 = C2
n+1|n〉 (13.8.15)

If C2
n+1 − C2

n = 1, then

ââ† − â†â = Î (13.8.16)

Then above implies that C2
n = n, since C0 =0. Also, Cn =

√
n. In summary, for bosons,

â†kâ
†
l − â

†
l â
†
k = 0 (13.8.17)

âkâl − âlâk = 0 (13.8.18)

âkâ
†
l − â

†
l âk = Îδkl (13.8.19)

The above is derived without resorting to the use of the quantum harmonic oscillator, but
the assumption that Cn is real and that C2

n = n. One can further conclude that

â†â|n〉 = n|n〉 (13.8.20)

which is the number operator, which has been derived using a different approach.

13.9 Boson Field Operators

Similar to fermions, we can define field operators for bosons, so that

ψ̂(r) =
∑
j

âjφj(r) (13.9.1)

In gereral, for N particles,

ψ̂(r1, r2, · · · , rN ) =
1√
N !

∑
n1,n2,··· ,nN

ânN · · · ân1
φn1

(r1)φn2
(r2) · · ·φnN (rN ) (13.9.2)
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We can illustrate with a three-particle field operator:

ψ̂(r1, r2, r3) =
1√
3!

∑
n1,n2,n3

ân3 ân3 ân1 φ̂(r1)φ(r1)φ(r2)φ(r3) (13.9.3)

When this operates on |1l, 1m, 1n〉 where the three particles are in different modes, we get
(13.3.9) except that − signs are now replaced by + signs. If we have a state denoted by

|2l, 1m〉 =
1√
2!

(
â†l

)2

am|0〉 (13.9.4)

then

ψ̂(r1, r2, r3)|2l, 1m〉

=
1√
2!3!

[2φl(r1)φm(r2)φl(r3) + 2φl(r2)φm(r3)φl(r1) + 2φl(r3)φm(r1)φl(r2)] |0〉 (13.9.5)

It can be shown that the above is the correctly normalized wavefunction. If the state is

|3l〉 =
1√
3!

(
â†l

)3

|0〉 (13.9.6)

then

ψ̂(r1, r2, r3)|3l〉 =
6

3!
φl(r1)φl(r2)φl(r3)|0〉 (13.9.7)

The above is in fact normalized.

13.10 Additive One-Particle Operator

In this case, we can illustrate with the three-particle case for bosons, arriving at an expression
similar to (13.5.12)

Ĥ =
1

6

∑
n2,n3

â†n3
â†n2

∑
n′1,n1

â†n′1
H

(1)
n′1,n1

ân1

 ân2
ân3

+ · · · (13.10.1)

where

H
(1)
n′1,n1

= 〈φn′1 |Ĥr1 |φn1
〉 (13.10.2)

When the three particles are in the |1l, 1m, 1n〉 state, (13.5.17) follows for bosons except that
we replace − signs with + signs. Equation (13.5.19) follows similarly for bosons, so does
(13.5.21) and (13.5.22). When two of the particles are in the same state as (13.9.4), we have

ân1
ân2

ân3
|2l, 1m〉 =

√
2!(δln3

δmn2
δln1

+ δln3
δmn1

δln2
+ δln2

δmn3
δln1

)|0〉 (13.10.3)
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Similar to (13.5.19), we need to evaluate∑
n2,n3

â†n3
â†n2

ân1
ân2

ân3
|2l, 1m〉

=
√

2!
(

2δln1 â
†
l â
†
m + δmn1 â

†
l â
†
l

)
|0〉

=
√

2!ân1

(
â†l

)2

â†m|0〉 = (2!)ân1 |2l, 1m〉 (13.10.4)

The first equality is established using (13.10.3), while the second equality is obtained by

working backward using commutation relations to expand ân1

(
â†l

)2

â†m|0〉. When the three

particles are in the same state as indicated by (13.9.6), we have

ân1 ân2 ân3 |3l〉 = (3!)3/2δln3δln2δln1 |0〉 (13.10.5)

and ∑
n2n3

â†n3
â†n2

ân1
ân2

ân3
|3l〉

= (3!)
3/2

δln1

(
â†l

)2

|0〉 =
1

3
(3!)3/2ân1

(
â†l

)3

|0〉 = (2!)ân1
|3l〉 (13.10.6)

In general, ∑
n2,n3

â†n3
â†n2

ân1
ân2

ân3
|ψ3p〉 = (2!) ân1

|ψ3p〉 (13.10.7)

where |ψ3p〉 is the three-particle Fock state of either

|1l, 1m, 1n〉 , |2l, 1m〉 , |3l〉 (13.10.8)

or other combinations. The proof for the rest follows that of fermion particles of (13.5.21) to
(13.5.24). In general, the Hamiltonian for N bosons is given by

Ĥ =
∑
n′,n

Hn′,nâ
†
n′ ân (13.10.9)

For the diagonal case, it becomes

Ĥ =
∑
n

Enâ
†
nân (13.10.10)
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Chapter 14

Interaction of Different
Particles∗

14.1 Introduction

In the previous chapter, it was shown that the Hamiltonian of a many particle system can
be written succinctly using Fock space representation. This opens up the study of com-
plex systems, such as excitons that involve the interaction of electron-hole pair, as well as
superconductivity that involves the interaction of electrons with phonons. In this chapter,
we will study the interaction of the electron of an atom with photons of a cavity using the
many-particle formalism.

14.2 Interaction of Particles

Say if we have two quantum systems that are initially non-interacting, incoherent, and inde-
pendent, their individual quantum systems can be described by eigenstates that satisfy

Ĥ1 |ψ1〉 = E1 |ψ1〉 (14.2.1)

Ĥ2 |ψ2〉 = E2 |ψ2〉 (14.2.2)

Even though the two systems are entirely non-interacting with each other, nevertheless, we
can combine the two systems together and write

Ĥ0 |ψ〉 =
(
Ĥ1 + Ĥ2

)
|ψ1〉 |ψ2〉 = (E1 + E2) |ψ1〉 |ψ2〉 = E |ψ〉 (14.2.3)

where |ψ1〉 |ψ2〉 represents a state in the direct product space. It can be used to represent
the eigenstates of the combined system. Equation (14.2.3) is entirely equivalent to (14.2.1)
and (14.2.2). In the above, Ĥ1 acts only on |ψ1〉 and Ĥ2 acts on |ψ2〉. The above allows

∗This chapter can be skipped on first reading.
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us to add an interaction term between system 1 and system 2, and the same direct product
space can be used to span the solution space. By using Fock space representation, the above
Hamiltonians can be written in terms of annihilation and creation operators for a system
consisting of fermions and bosons,

Ĥ1 =
∑
j

Ej b̂
†
j b̂j , Ĥ2 =

∑
λ

~ωλâ†λâλ (14.2.4)

where Ĥ1 can be the Hamiltonian for electrons, and Ĥ2 can be the Hamiltonian for photons
where the 1

2~ωλ term or the zero-point energy has been ignored. This term will just introduce
a phase shift in the solution.

When electric dipole interaction exists between the electron of an atom and the electro-
magnetic field, the interaction Hamiltonian may be written as

Ĥed,r = eE · r (14.2.5)

The above has been added as a perturbation to the unperturbed equation (14.2.3) where the
electric field is treated classically in a previous chapter. We have enough knowledge now to
treat both E and r quantum mechanically. Here, r represents the position of the electron.
For the electron in the i-th atom, the above becomes

Ĥed,ri = ie
∑
λ

(
âλ − â†λ

)√ ~ω
2ε0

uλ (ri) · ri (14.2.6)

We have used a quantized cavity mode electric field in (14.2.5) to arrive at the above. Also,
r in coordinate space representation remains unchanged. When N atoms are present,

Ĥed,r =

N∑
i=1

ie
∑
λ

(
âλ − â†λ

)√ ~ω
2ε0

uλ (ri) · ri (14.2.7)

A similarity transform of the above Hamiltonian can be performed with the N particle field
operator to yield

Ĥed =

∫
ψ̂†NP (r1, · · · , rN )Ĥed,rψ̂NP (r1, · · · , rN )dr1 · · · drN (14.2.8)

As mentioned in the previous chapter, since only one-particle interaction is involved, the
above can be transformed with the one-particle field operator yielding

Ĥed =
∑
j,k,λ

Hed,λ,j,k b̂
†
j b̂k

(
âλ − â†λ

)
(14.2.9)

where

Hed,λ,j,k = ie

√
~ω
2ε0

∫
drφ∗j (r)uλ(r) · rφk(r) (14.2.10)

In the above, j, k represents the orbital wave functions of the atomic energy states with energy
Ej and Ek, respectively, and λ denotes the electromagnetic mode.
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14.3 Time-Dependent Perturbation Theory

In the time-dependent perturbation theory, we first seek the solution of the unperturbed
system. The eigenstate of the unperturbed system is defined as

Ĥ0 |Nfm;Nbm〉 = Em |Nfm;Nbm〉 (14.3.1)

where |Nfm;Nbm〉 stands for a vector in the direct product space of fermions and bosons:
Nfm stands for the m-th state of the fermions, while Nbm stands for the m-th state of the
bosons.

When the system is perturbed, we denote the solution |ψ〉 as a linear superposition of the
eigenstates of the unperturbed solution. That is

|ψ〉 =
∑
m

cm (t) e−iωmt |Nfm;Nbm〉 (14.3.2)

where ~ωm = Em. The state |ψ〉 evolves in time according to the equation

i~
∂

∂t
|ψ〉 =

(
Ĥ0 + Ĥp

)
|ψ〉 (14.3.3)

Applying the time-dependent perturbation method as we have done previously, and testing
the equation with 〈Nfq;Nbq| gives

ċ(1)
q (t) =

1

i~
∑
m

c(0)
m e−i(ωm−ωq)t 〈Nfq;Nbq| Ĥp |Nfm;Nbm〉 (14.3.4)

If the starting state is assumed such that c
(0)
s = 1, and all other states are zero, then the

above becomes

ċ(1)
q (t) =

1

i~
ei(ωq−ωs)t 〈Nfq;Nbq| Ĥp |Nfs;Nbs〉 (14.3.5)

with
Ĥp = Ĥed =

∑
j,k,λ

Hed,λ,j,k b̂
†
j b̂k

(
âλ − â†λ

)
(14.3.6)

14.3.1 Absorption

The electron in an atom is assumed to have two states: a lower energy state E1, and an upper
energy state E2. We assume a photon in mode λ1 in the cavity. Then the starting state can
be written as

|Nfs;Nbs〉 = b̂†1â
†
λ1
|0〉 (14.3.7)

with energy
Es = E1 + ~ωλ1

(14.3.8)

Consequently,

Ĥp |Nfs;Nbs〉 =
∑
j,k,λ

Hed,λ,j,k b̂
†
j b̂k

(
âλ − â†λ

)
b̂†1â
†
λ1
|0〉 (14.3.9)
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It can be shown that

b̂†j b̂k

(
âλ − â†λ

)
b̂†1â
†
λ1
|0〉 = δk1δλλ1

b̂†j |0〉 − δk1b̂
†
j â
†
λâ
†
λ1
|0〉 (14.3.10)

In order for 〈Nfq;Nbq| Ĥp |Nfs;Nbs〉 to be nonzero, it is necessary that |Nfq;Nbq〉 contains

b̂†j |0〉 or b̂†j â
†
λâ
†
λ1
|0〉. If

|Nfq;Nbq〉 = b̂†j |0〉 (14.3.11)

then Eq = Ej , and

ċ(1)
q (t) =

1

i~
ei(ωj−ω1−ωλ1)t

∑
j,k,λ

Hed,λ,j,kδk1δλλ1
〈0| b̂j b̂†j |0〉 (14.3.12)

=
1

i~
∑
j

ei(ωj−ω1−ωλ1)tHed,λ1,j,1 (14.3.13)

where ~ωj = Ej . The above is an oscillatory function of t unless ωj − ω1 − ωλ1 = 0.

When this happens, ċ
(1)
q (t) will integrate to a large value, indicating the high likelihood

of transition to his eigenstate. Therefore, for this to happen, we need

E2 − E1 = ~ωλ1 (14.3.14)

In this process, we start with the electron in E1 and a photon in the cavity, and end up with
the electron in E2 and no photon as indicated by (14.3.11).

If we integrate the above equation, a sinc function results, which can be approximated by
a delta function for long integration time, as was done previously. One can show that

|c(1)
q |2 ≈

2π

~
t0 |Hedλ1,2,1|

2
δ(E2 − E1 − ~ωλ1

), to →∞ (14.3.15)

One can derive the transition rate as before to arrive at

wq =
2π

~
| Hedλ1,2,1 |2 δ(E2 − E1 − ~ωλ1) (14.3.16)

In the above, the other possibility is for the final state to be

|Nfq;Nbq〉 = b̂†j â
†
λâ
†
λ1
|0〉 (14.3.17)

with energy

Eq = Ej + ~ωλ + ~ωλ1 (14.3.18)

Hence

Eq − Es = Ej − E1 + ~ωλ (14.3.19)

and Eq−Es = 0 in order for transition to occur or c
(1)
q to be large. However, (14.3.19) cannot

be zero. If Ej = E2, Eq −Es > 0 always. If Ej = E1, then ~ωλ > 0. What this means is that
it is not possible to start with an electron in the ground state and a photon in the cavity to
end up with the electron in the excited state with the emission of a photon.
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14.4 Spontaneous Emission

In the case of spontaneous emission, we assume that the starting state of the electron is in
the excited state with energy E2. Then, Es = E2 initially and

|Nfs;Nbs〉 = b̂†2|0〉 (14.4.1)

Then

Ĥp|Nfs;Nbs〉 =
∑
j,k,λ

Hed,λ,j,k b̂
†
j b̂k

(
âλ − â†λ

)
b̂†2|0〉 (14.4.2)

The above can be reduced to

Ĥp|Nfs;Nbs〉 = −
∑
j,k,λ

Hed,λ,j,k δ2k b̂
†
j â
†
λ|0〉 (14.4.3)

Therefore, for 〈Nfq;Nbq|Ĥp|Nfs;Nbs〉 to be nonzero, we need

|Nfq;Nbq〉 = b̂†j â
†
λ|0〉 (14.4.4)

with

Eq = Ej + ~ωλ (14.4.5)

Therefore

Eq − Es = Ej − E2 + ~ωλ (14.4.6)

In order for a sizeable c
(1)
q , we need Ej = E1, and then

E2 − E1 = ~ωλ (14.4.7)

Then electron starts with the excited state E2, spontaneously emits a photon, and drops to
lower state E1. Then energy of the emitted photon satisfies (14.4.7) by energy conservation.

14.5 Stimulated Emission

In this case, the electron in an atom is in the excited state. The presence of a photon in the
cavity stimulates the emission of another photon from the electron. The initial state is

|Nfs;Nbs〉 = b̂†2â
†
λ1
|0〉 (14.5.1)

with

Es = E2 + ~ωλ1
(14.5.2)
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We can show that

Ĥp|Nfs;Nbs〉 =
∑
j,k,λ

Hed,λ,j,k b̂
†
j b̂k

(
âλ − â†λ

)
b̂†2â
†
λ1
|0〉 (14.5.3)

=
∑
j,k,λ

Hed,λ,j,k δk2

(
δλλ1

b̂†j − b̂
†
j â
†
λâ
†
λ1

)
|0〉 (14.5.4)

In order for the above to transition to the final state, or one requires a non-zero result for

〈Nfq;Nbq|Ĥp|Nfs;Nbs〉

it is necessary that

|Nfq;Nbq〉 = b̂†j â
†
λâ
†
λ1
|0〉 (14.5.5)

with energy

Eq = Ej + ~ωλ + ~ωλ1 (14.5.6)

or

Eq − Es = Ej − E2 + ~ωλ = 0 (14.5.7)

In other words, the only possibility is for Ej = E1, yielding

E2 − E1 = ~ωλ (14.5.8)

The above is just the spontaneous emission of a photon with the above energy, regardless if
we already have a photon with energy ~ωλ1 in the cavity. So it is not the most interesting
case.

Next we consider the case when λ = λ1. Then

|Nfq;Nbq〉 =
1√
2!
b̂†j

(
â†λ1

)2

|0〉 (14.5.9)

with

Eq = Ej + 2~ωλ1
(14.5.10)

Consequently,

〈Nfq;Nbq|Ĥp|Nfs;Nbs〉 = Hed,λ1,j,2〈0|
1√
2!

(âλ1
)2b̂j b̂

†
j

(
â†λ1

)2

|0〉

=
√

2!Hed,λ1,j,2〈0|
1√
2!

(âλ1
)2b̂j

1√
2!
b̂†j

(
â†λ1

)2

|0〉

=
√

2Hed,λ1,j,2 (14.5.11)

The
√

2 factor is important implying that the transition is two times more likely to occur
compared to the previous case. This is peculiar to stimulated emission where the emission of
a photon is enhanced by the presence of a photon of the same frequency.
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14.6 Multi-photon Case

In the multi-photon case, the transition rate for stimulated emission can be shown to be

wq =
2π

~
(nλ1

+ 1)|Hed,λ1,1,2|2δ(E1 − E2 + ~ωλ1
) (14.6.1)

implying that the presence of nλ1 photons in the cavity enhances the emission by (nλ1 + 1)
times.

The spontaneous emission, however, is not affected by the presence of photons of other
frequencies in the cavity. For the absorption case, it can be shown that the formula is

wq =
2π

~
nλ1 |Hed,λ1,1,2|2δ(E2 − E1 − ~ωλ1) (14.6.2)

14.7 Total Spontaneous Emission Rate

When an electron emits a photon into the cavity, there are many modes with the same
frequency that the emission can occur. In general, the total spontaneous emission rate is

Wspon =
∑
q

wq =
2π

~
∑
λ

|Hed,λ,1,2|2δ(E1 − E2 + ~ωλ) (14.7.1)

where in the above summation, we have replaced q with λ since λ is the index for the pho-
ton mode that the quantum state transition to in the spontaneous emission of one photon.
Furthermore,

Hed,λ,1,2 = ie

√
~ωλ
2ε0

∫
φ∗j (r)[uλ(r) · r]φk(r)dr

' ie
√

~ωλ
2ε0

uλ(r0) · rjk (14.7.2)

where

rjk =

∫
φ∗j (r)rφk(r)dr (14.7.3)

We have assumed here that uλ(r0) is slowly varying compared to φl(r), l = j, k, and that
φl(r) is highly localized around an atom.

The modes in the cavity can be made countable by imposing a periodic boundary condition
arriving at

uλ(r) = e
1√
Vb
eikλ·r (14.7.4)

where we have denoted the index of k by λ where ordinarily, it is omitted or implied.
The summation over different electromagnetic modes then becomes∑

λ

→
∑
pol

∑
k

→
∑
pol

∑
k

Vb
(2π)3

∆k =
∑
pol

∫
Vb

(2π)3
dk (14.7.5)
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Figure 14.1: The vectors in the polarization of the emitted photon are aligned to simplify the
calculation (from DAB Miller).

In the k space, the spacings between the modes are given by (2π/Lx, 2π/Ly, 2π/Lz). Hence,
each mode occupies a volume of (2π)3/Vb where Vb = LxLyLz, and the number of modes in
dk is dVb/(2π)3dk.

We can also pick the polarization such that one of them is always orthogonal to r12, so
that

uλ(r0) · r12 = uλ(r0)r12 sin θ (14.7.6)

The above is also equivalent to making r12 to coincide with the z-axis of a spherical coordinate
system, so that the radiation problem is axi-symmetric.

Consequently,

Wspon =
2π

~

∫
Vb

(2π)3

∣∣∣∣∣ie
√

~ωk
2ε0

1√
Vb
eik·r0r12 sin θ

∣∣∣∣∣
2

δ(E1 − E2 + ~ωk)dk (14.7.7)

or

Wspon =
e2|r12|2

8π2ε0

∫
ωk sin2 θδ(E1 − E2 + ~ωk)dk

=
e2|r12|2

8π2ε0

∫ ∞
k=0

∫ π

θ=0

ωkδ(E1 − E2 + ~ωk)2π sin3 θk2dθdk (14.7.8)

In the above, ωk = ck, or ~ck = ~ωk. Then

Wspon =
e2|r12|2

4πε0c3~4

∫ ∞
k=0

∫ π

θ=0

(~ωk)δ(E1 − E2 + ~ωk) sin3 θdθ(~ωk)2d(~ωk) (14.7.9)

Since ∫ π

θ=0

sin3 θdθ = −
∫ 1

−1

(1− cos2 θ)d cos θ =
4

3
(14.7.10)
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then,

Wspon =
e2|r12|2ω3

12

3πε0~c3
(14.7.11)

where ~ω12 = E2 − E1. The life time of a state is then τ = W−1
spon.

14.8 More on Atom-Field Interaction

It is shown that when an electron is in the presence of a field, the classical Hamiltonian for
an atom is

HA =
1

2m
[p + eA(r, t)]

2 − eΦ(r, t) + V (r) (14.8.1)

Lorentz force law can be derived from the above. For quantum mechanics, we elevate p to
p̂ = −i~∇ to become an operator arriving at

ĤA =
1

2m
[p̂ + eA]

2 − eΦ + V (r) (14.8.2)

The scalar potential Φ and vector potential A describe an electromagnetic field, where

E(r, t) = −∇Φ− ∂tA(r, t) (14.8.3)

B(r, t) = ∇×A(r, t) (14.8.4)

The definitions of A and Φ are not unique. It is common to apply the radiation gauge where
∇ · A = 0,Φ = 0, where E = −∂tA(r, t).∗ In this gauge, E and A are linearly related,
∇ ·E = 0, and it works for a source-free medium. Consequently,

ĤA =
1

2m
[p̂ + eA]

2
+ V (r) (14.8.5)

In the long wavelength approximation, we let A(r, t) = A(t) be independent of r. In this
case we can show that

(p̂ + eA) e−
ie
~ A(t)·rφ(r, t) = e−

ie
~ A(t)·rp̂φ(r, t) (14.8.6)

(p̂ + eA)
2
e−

ie
~ A(t)·rφ(r, t) = e−

ie
~ A(t)·rp̂2φ(r, t) (14.8.7)

But

∂

∂t
e−

ie
~ A(t)·rφ(r, t) = − ie

~
∂A(t)

∂t
· rφ(r, t) + e−

ie
~ A(t)·r∂tφ(r, t) (14.8.8)

∗This is Coulomb gauge with Φ = 0.
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Given the original Schrödinger equation of the form

ĤAφ
′(r, t) =

(
1

2m
[p̂ + eA]

2
+ V (r)

)
φ′(r, t) = i~

∂

∂t
φ′(r, t) (14.8.9)

with the following transformation

φ′(r, t) = e−
ie
~ A(t)·rφ(r, t) (14.8.10)

and making use of (14.8.6) to (14.8.8), it becomes[
1

2m
p̂2 + V (r)− e∂tA(t) · r

]
φ(r, t) = i~∂tφ(r, t) (14.8.11)

Using the fact that E = −∂tA, the above becomes[
1

2m
p̂2 + V (r) + eE · r

]
φ(r, t) = i~∂tφ(r, t) (14.8.12)

The above is equivalent to performing a similarity transform to the Hamiltonian ĤA as

Ĥ ′A = e
ie
~ A(t)·rĤAe

− ie~ A(t)·r (14.8.13)

or a change of basis from

φ′(r, t) = e−
ie
~ A(t)·rφ(r, t) (14.8.14)

However, the total Hamiltonian of the atom-field system is

Ĥ = ĤA + ĤF (14.8.15)

where

ĤF =
∑
λ

1

2
~ωλ[â†λâλ + âλâ

†
λ] (14.8.16)

In a fully quantum system A → Â or fields are elevated to operators in ĤA or in (14.8.5).
It can be shown that the above similarity transform works ever if we include ĤF part in the
Hamiltonian. After the similarity transform, the above becomes

Ĥ ′ = ĤA0 + Ĥ ′F + Ĥ ′I (14.8.17)

where

ĤA0 =
p̂2

2m
+ V (r) (14.8.18)

and
Ĥ ′I = eÊ · r (14.8.19)

H ′F retains the form similar to HF .† The above manipulation is also known as the electric
field gauge or E-gauge.

†See C. Cohen-Tannoudji, J. Dupont-Roc and G. Grynberg, Photons and Atoms: Introduction to Quantum
Electrodynamics, Wiley Professional, Feb 1997.
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Another way to derive the dipole interaction term is to rewrite (14.8.5) as

ĤA =
p̂2

2m
+
eA · p̂
m

+
e2A ·A

2m
+ V (r) (14.8.20)

where we have assumed that p̂ ·A = 0 because ∇ ·A = 0. Since p̂ acts on the atomic orbital
wave functions, which are rapidly varying, we can assume that p̂ � eA. Then (14.8.20)
becomes

ĤA
∼=

p̂2

2m
+ V (r) +

eA · p̂
m

(14.8.21)

The above requires no similarity transform. When the field Hamiltonian is added, and all
fields are elevated to operators, we can write the total Hamiltonian as

Ĥ = ĤA0 + ĤF + ĤI (14.8.22)

where ĤA0 is as defined before in (14.8.18), and

ĤI =
eÂ · p̂
m

(14.8.23)

14.8.1 Interaction Picture

If the quantum system is initially described by a Hamiltonian Ĥ0, and with the addition of
the interaction Hamiltonian ĤI , we can write the exact solution of the quantum system in
terms of the interaction picture. For Schrödinger equation

i~
∂

∂t
|ψ〉 =

(
Ĥ0 + ĤI

)
|ψ〉 (14.8.24)

we first let
|ψ〉 = e−

i
~ Ĥ0t|φ〉 (14.8.25)

Then

i~
∂

∂t
|ψ〉 = Ĥ0|ψ + e−

i
~ Ĥ0t

∂

∂t
|φ〉 (14.8.26)

Using the above in (14.8.24), we have

i~
∂

∂t
|φ〉 = e

i
~ Ĥ0tĤIe

− i
~ Ĥ0t|φ〉 (14.8.27)

The above equation can be integrated formally to yield

|φ(t)〉 = exp

(
− i
~

∫ t

0

dt′e
i
~ Ĥ0t

′
ĤIe

− i
~ Ĥ0t

′
)
|φ (0)〉 (14.8.28)

If instead we use a perturbation concept and let

|φ〉 ≈
∑
m

[
c(0)
m + c(1)

m (t)
]
|φm〉 (14.8.29)
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Using the fact that ∂tc
(0)
m = 0, ∂t|φm〉 = 0, because |φm〉 is a stationary state with no time

dependence, from (14.8.27), we have

i~
∑
m

ċ(1)
m |φm〉 =

∑
m

c(0)
m e

i
~ Ĥ0tĤIe

− i
~ Ĥ0t|φm〉 (14.8.30)

Assuming that c
(0)
m = δsm, i.e., the quantum system is in only one initial state, then testing

(14.8.30) with |φq〉 where |φq〉 is a final stationary state, we have

i~ċ(1)
q = ei(ωq−ωs)t〈φq|ĤI |φs〉 (14.8.31)

The above is the same as the one derived from time-dependent perturbation theory.

14.8.2 E · r or A · p Interaction

To find the time evolution of the quantum system due to interaction between the atom and
the field, we need to evaluate

〈φq|ĤI |φs〉 (14.8.32)

However, the interaction Hamiltonian can be written as

ĤI = eÊ · r (14.8.33)

in one case, and
Ĥ ′I = eÂ · p/m (14.8.34)

in another case. In order to reconcile the difference, we note that in (14.8.14), φ′ and φ are
related by a transform. When this transform is accounted for, the difference disappears.‡

‡For details, see M.O. Scully and M. Suhail Zubairy, Quantum Optics,CUP, 1997.



Chapter 15

Quantum Interpretation and
Quantum Information

15.1 Introduction

Before the 1980s, the interpretation of quantum mechanics has been fraught with contro-
versies. The two main schools of thought was one that followed the Copenhagen school led
by Niels Bohr (1885-1962), and the other one that followed Einstein’s school led by Albert
Enstein (1879-1955). It was not until 1982 that Alain Aspect (1947-) did some conclusive
experiments in favor of the Copenhagen school. Single photon sources were not created un-
til 1974 by John F. Clauser (1942-). It was not until then that experiment could confirm
that photon behaves like a quantum particle. Then photon can be used to test the tenet of
quantum interpretation.

One important tenet of quantum mechanics is that one does not know what the state
of the system is until one performs a measurement. Before the measurement, the quantum
system is described by a state that can be in a linear superposition of different states. After
the measurement, the system collapses to the state that is “discovered” by the measurement.
It is the existence as a linear superposition of states that greatly enriches the information
content of a quantum system. The possibility of a system to be simultaneously in different
states is peculiar to quantum mechanics. Objects in the classical world cannot be in such a
state. It puts quantum systems in the realm of “ghosts” and “angels” in fairy tales and ghost
stories of different cultures; these ghosts and angels can be simultaneously in many places or
in different states. This “spookiness” of quantum mechanics is only recently confirmed by
experiments in the late 70’s and early 80’s. It is because of these “ghost-angel” states, that we
can have quantum cryptography, quantum communication, quantum circuits, and quantum
computing.

An uneasiness about the philosophical interpretation of quantum mechanics is that one
does not know what state the quantum system is in before the measurement. This has
prompted Einstein to ask,“Is the moon there if you don’t look at it?” The uncertainty of
the state applied to quantum mechanics is only true for a linear superposition of coherent
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quantum states, which I term the ghost-angel state. This state has not been found to exist
for macroscopic objects.

However, if one insists that, “One does not know if the moon is there before one looks at
it.” as a true statement, it cannot be refuted nor confirmed by experiments. The mere act
of an experiment already means that we have “looked” at the moon. The same claim goes
that “If I saw a fallen tree in the forest, it did not necessary follow from the act of falling
before I arrived there.” Alternatively, “If we found dinosaur bones, it did not necessary mean
that dinosaurs roamed the earth over 200 million years ago.” We believe that the moon is
there even if we do not look at it, the tree fell because it went through the act of falling,
and that dinosaur bones were found because they roamed the earth 200 million years ago,
because we believe in the realism of the world we live in. This realism cannot be proved but
is generally accepted by those who live in this world. Hence, it is this surreal interpretation of
quantum mechanics that causes the uneasiness among many physicists. But the interpretation
of quantum mechanics is slightly better than the above: a pure quantum state is in a linear
superposition of states, the precise one of which we are not sure of until a measurement is
performed. However, this surrealism of this ghost-angel state exists in our minds in fairy
tales and ghost stories of many cultures. Experimental effort has agreed with the surreal
interpretation of quantum mechanics in terms of the Bell’s theorem, that will be discussed.

The ghost-angel state of a quantum system is what enriches the information in it. However,
for a quantum system to be in such a state, the linear superposition of states must be coherent
with each other. Quantum coherence is the largest stumbling block to the construction of
quantum computers; however, rapid advances are being made, and one day, it can be a reality.

15.2 Interpretation of Quantum Mechanics

As mentioned before, quantum mechanics has the basic tenet that a quantum state is in a
linear superposition of states before a measurement. A measurement projects a quantum
state into one of the states. The ability of a quantum state to be in a linear superposition
of states is surreal, and it has bothered a great many physicists. In the classical world, a
system can only be in one state or the other, but not in a linear superposition of states. Only
the world of ghosts and angels can we imagine that an object is in a linear superposition of
states.

In the coordinate space, an electron, represented by its wavefunction, can be simultane-
ously at all locations where the wavefunction is non-zero. In the Young’s double slit experi-
ment, the electron, represented by its wavefunction, can go through both slits simultaneously
like a wave.∗

When the ghost-angel state concept is extended to classical objects, such as a cat, it gives
rise to the ludicrous result: the story of the Schrödinger cat. The Schrödinger cat is a linear
superposition of a dead cat and a live cat. To understand why the Schrödinger cat does not
exist, we need to understand the concept of quantum coherence.

Two states are in quantum coherence if the phase relationships between them are deter-
ministic and not random. When this coherence is lost, the phase relationship between them
is lost. The quantum system has already collapsed into one of the two states. Hence, in

∗Or the apparition of the ghost-angel state.
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practice, a measurement is not always necessary before the quantum system collapses into
one or more of the quantum states. The interaction of quantum system with its environment
can cause such a collapse. These are called mixed states in the language of density matrix.

From a statistical physics viewpoint, it is impossible for a quantum system to be completely
isolated. Almost all systems are in a thermal bath of the universe with which they are
seeking equilibrium. Macroscopic objects cannot be in a pure quantum state which has the
characteristics of the ghost-angel state. It is impossible for the huge number of atoms in the
Schrödinger cat to be coherent with respect to each other.

The density matrix is a nice way of representing a state of a quantum system where
the physics of quantum coherence surfaces explicitly. This concept is expressed in the off-
diagonal terms of the density matrix. If one allows time average or ensemble average† to the
density matrix, when the system is expressed by quantum states that are not coherent, the
off-diagonal elements will average to zero. The system is in a mixed state rather than a pure
quantum state. The system is similar to the local hidden variable theory: the state of the
quantum system is already predetermined before the measurement.

15.3 Entangled States

A photon has to be a causal wave packet since it could be emitted by say, spontaneous emission
from an atomic transition. The spontaneous emission gives rise to a packet of energy zipping
through space at the speed of light. Since this packet of energy has a beginning and an end,
it can be described by a wave packet. The particle that is associated with this wave packet is
a photon, carrying a quantum of energy equal to ~ω. Since a photon is necessary localized,
the wave packet cannot be purely monochromatic, but it has to be quasi-monochromatic, or
it consists of many modes.

A multi-mode photon can be described by the following field operator

Ê(r, t) =
∑
k,s

1

2

√
~ωk
V ε0

esâk,se
ik·r−iωt + c.c (15.3.1)

with the corresponding Hamiltonian given by

Ĥ =
∑
k,s

Ĥk,s (15.3.2)

with the Fock state given by

|ψ〉 =
∏
k,s

|nk,s〉 (15.3.3)

For a quasi-monochromatic case, when only one frequency component is important, the dom-
inant mode above can be kept, and the electric field operator can be approximated by

Ê(r, t) =
∑
s

1

2

√
~ωk
V ε0

esâk,se
ik·r−iωt + c.c (15.3.4)

†Processes for which time average is the same as ensemble average are known as ergodic processes.
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with the corresponding Hamiltonian being

Ĥ =
∑
s

Ĥk,s = Ĥk,v + Ĥk,h = Ĥk,v′ + Ĥk,h′ (15.3.5)

Since any two orthogonal polarizations represented by

Ê(r, t) ∼ evâk,v + ehâk,h = ev′ âk,v′ + eh′ âk,h′ (15.3.6)

are complete (ignoring the c.c. part) to represent the field, one can pick any two orthogonal
polarizations. If only one photon is present, then it is in the linear superposition of these two
orthogonal states as a quantum particle. The corresponding Fock state is

|ψ〉 =
∏
s

|nk,s〉 (15.3.7)

Hence, the single photon Fock state that the field operator acts on can be denoted by

|ψ〉 = Cv|1k,v〉|0k,h〉+ Ch|0k,v〉|1k,h〉 = Cv′ |1k,v′〉|0k,h′〉+ Ch′ |0k,v′〉|1k,h′〉 (15.3.8)

For simplicity, the unoccupied number state is usually omitted, and the above can be written
as

|ψ〉 = Cv|1k,v〉+ Ch|1k,h〉 = Cv′ |1k,v′〉+ Ch′ |1k,h′〉 (15.3.9)

The above denotes a photon in a purely monochromatic k state with a linear superposition
of two orthogonal polarizations. It has a packet of energy E = ~ωk. However, a photon with
a purely monochromatic k state is not localized. But a photon generated by a source like an
atomic transition must be causal, and hence, localized. A localized wave packet describing
this photon field can be constructed by using a linear superposition of wavenumber k or
frequencies. For high frequency photons, this localized state can have a center frequency with
a small spread of frequencies around the center frequency. The single-photon Fock state can
hence be written as

|ψ〉 =
∑
k

Ck,v|1k,v〉+ Ck,h|1k,h〉 (15.3.10)

For quasi-monochromatic photons, the above will be dominated by one frequency term and
we can denote this photon approximately with the state vector (15.3.8).

With the above picture in mind, we can think of two localized, quasi-monochromatic
photons traveling in different directions. A direct product space can be used to represent the
eigenstate of these two photons:

|ψ〉ab = |1ka,v〉a|1kb,v〉b (15.3.11)

For simplicity, we denote these two-photon eigen state as

|ψ〉12 = |V 〉1|V 〉2 (15.3.12)
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Figure 15.1: Two photons traveling in different directions.

for subsequent discussion representing two photons zipping in different directions.
If the two photons are generated from the same source, entangled photon states may

result. Entangled two-particle states are those that cannot be written as a product (outer
product or tensor product) of simpler states. An example is the EPR (Einstein, Podolsky,
and Rosen) pair

|Φ+〉12 =
1√
2

(
|H〉1|H〉2 + |V 〉1|V 〉2

)
(15.3.13)

Other entangled states are

|Φ−〉12 =
1√
2

(
|H〉1|H〉2 − |V 〉1|V 〉2

)
(15.3.14)

|Ψ+〉12 =
1√
2

(
|H〉1|V 〉2 + |V 〉1|H〉2

)
(15.3.15)

|Ψ−〉12 =
1√
2

(
|H〉1|V 〉2 − |V 〉1|H〉2

)
(15.3.16)

The above four states are also called the Bell states. They are usually generated due to the
particle pair needing to satisfy conservation of angular momentum. For instance, two photons
are generated by atomic transitions where the initial angular momentum of the system is zero.

An angular momentum conserving state with two counter-propagating photon is

|Φ〉 =
1√
2

(
|R〉1|R〉2 + |L〉1|L〉2

)
(15.3.17)

where R and L stand for right-handed and left-handed circular polarizations, respectively.
By letting

|R〉1 = (|H〉1 + i|V 〉1) , |R〉2 = (|H〉2 + i|V 〉2) (15.3.18)

|L〉1 = (|H〉1 − i|V 〉1) , |L〉2 = (|H〉2 − i|V 〉2) (15.3.19)

which is a change of basis, the above becomes

|Φ〉 = − 1√
2

(
|H〉1|H〉2 − |V 〉1|V 〉2

)
(15.3.20)

one of the Bell states.
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The entangled states are bewildering because it means that for two counter-propagating
photons, if one measures one photon is in |H〉 state, the other photon immediately collapses
to an |H〉 state as well, regardless of how far apart the two photons are. Whereas before the
measurement, the photons are in a linear superposition of a |H〉 and |V 〉 states.

15.3.1 EPR Paradox

The interpretation of quantum mechanics went through difficult times. The fact that a particle
can be in a superposition of many states before a quantum measurement, and the probabilistic
interpretation of a quantum measurement behooves the challenge by many great physicists,
especially Einstein. The most severe challenge of quantum mechanics and its interpretation
comes from the EPR (Einstein, Podolsky and Rosen) paradox. To describe it simply, we
imagine a π meson that decays into an electron-positron pair:

πo → e− + e+ (15.3.21)

The π meson originally has spin zero. So for conservation of angular momentum, the electron-
positron pair will have opposite spins: spin up and spin down. Since the total angular
momentum is zero, they are in the singlet state which has total spin of zero, or

|Ψ〉 =
1√
2

(|↑−↓+〉 − |↓−↑+〉) (15.3.22)

The electron-positron pair is in the linear superposition of two states, but the electron and
positron are flying in opposite directions. According to the interpretation of quantum mechan-
ics, one does not know the spin state of the electron nor the positron before the measurement.
After one measures the spin state of, say the electron, irrespective of how far the positron
is away from the electron, we immediately know the spin state of the positron according to
the above equation. The spins of the two particles are always opposite to each other. This
notion is unpalatable to many physicists, and hence, is called “spooky action at a distance”
by Einstein. Information cannot travel faster than the speed of light. How could the state of
one particle be immediately determined after a measurement is made at another particle far
away? This paradox attempts to prove that quantum mechanics is incomplete by reductio ad
absurdum.

15.4 Bell’s Theorem‡

Quantum measurements are known to be random, and the data can only be interpreted
probabilistically. If one were to measure the spin of one of the particle, it is equally likely
to be in the spin up or spin down state randomly according to (15.3.22). In the hidden
variable theory, it is suggested that the outcome of the experiment is already predetermined
even before the measurement. The outcome is determined by a hidden random variable
λ. It is the randomness of this variable that gives rise to the randomness of the outcome in
quantum measurements. This is contrary to the now accepted quantum interpretation§ where

‡This section is written with important input from Y. H. Lo and Q. Dai.
§This was espoused by the Copenhagen school.
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one does not know what state a quantum system is until after a measurement is performed.
Before the measurement, the quantum system can be in a linear superposition of states. The
measurement collapses the quantum system into the state “discovered” by the measurement.

Many hidden variable theories were proposed shortly after the EPR paradox was published.
In 1964, John Steward Bell (1928-1990), in the spirit of proving the correctness of the hidden
variable theory, came up with an inequality that showed the incompatibility of quantum
mechanics and the hidden variable theory. If hidden variable theory is correct, the inequality
will be satisfied, but if quantum mechanics is correct, the inequality is violated. This is known
as Bell’s theorem.

We can discuss the derivation of the Bell’s theorem in the context of the two-photon
experiment, since the experiment that verifies the theorem has been done using photons. The
actual experiment is quite complex, but we will reduce it to a simplified case. The simplified
experiment involves a photon source that produces an entangled photon pair, each of which
is traveling in opposite directions. The photon pair is in one of the Bell state, say the EPR
pair:

|Ψ〉 =
1√
2

(|V1V2〉+ |H1H2〉) (15.4.1)

In the above state, if one of the photons is measured to be V (vertical) polarized, the other
photon must be V polarized. However, if one photon is measured to be H (horizontal)
polarized, the other photon must be H polarized. We will detect the photon state with a
simple polarizer. In the above state, which is a linear superposition of two states, the photons
are equally likely to be found in the first state, |V1V2〉, or the second state, |H1H2〉. The
polarizer will detect an H or a V polarization with equal likelihood, but the moment that
one photon is determined to be H polarized, the other photon is immediately known to be H
polarized, and vice versa. This is the “spookiness” of quantum interpretation.

Imagine an atomic source that generates two photons propagating in opposite directions.
The atom initially has zero angular momentum, so that the two photons are either both
horizontally polarized or both vertically polarized. Hence, the photon can be described in
one of the Bell states or an entangled state as shown in (15.4.1).

Figure 15.1: Experimental verification of Bell’s theorem

15.4.1 Prediction by Quantum Mechanics

First, we will predict the experimental outcome by invoking the quantum measurement hy-
pothesis and quantum interpretation. Photon 1 is measured with a polarizer P1 with vertical
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polarization pointing in the a direction. If P1 measures a V polarization, we set A(a) = 1, and
if P1 measures an H polarization, we set A(a) = −1. Here, A(a) denotes the measurement
outcome, and it is completely random according to quantum mechanics.

Similarly, polarizer P2 has its vertical polarization oriented in the b direction. When it
measures a V polarization, we set B(b) = 1, and when it measures an H polarization, it sets
B(b) = −1. Again, B(b) is completely random. In the above, we set A and B to be functions
of a and b respectively, as the experimental outcomes are expected to be functions of the
orientation of the polarizers.

If a = b, we expect that

〈A(a)B(b)〉 = E (a,b) = AB = 1 (15.4.2)

If a⊥b, if P1 measures a V polarization, P2 will measure a H polarization, we expect that

〈A(a)B(b)〉 = E (a,b) = AB = −1 (15.4.3)

Even though A and B are random, their products are deterministic in the above two cases.
An interesting case ensues if a and b are at an incline with respect to each other. This

shows the distinguishing feature of a quantum particle subject to quantum interpretation. In
this case, we know by quantum mechanics that

|V 〉a = cos θ|V 〉b − sin θ|H〉b (15.4.4)

|H〉a = sin θ|V 〉b + cos θ|H〉b (15.4.5)

Figure 15.2: The case when the two polarizers are at an incline with respect to each other
for proving the Bell’s theorem.

If P1 measures an outcome with A(a) = 1, then the photon that propagates to P2 must
be polarized in the a direction. However, according to (15.4.4), for P2, such a photon has the
probability of cos2 θ being detected in the V polarization, and the probability of sin2 θ being
detected in the H polarization. Hence, the expectation value of B, or 〈B〉A=1 = cos2 θ−sin2 θ.
The above can also be written as

〈B〉A=1 =
∑
B

P (B|A = 1)B

= P (B = 1|A = 1)− P (B = −1|A = 1)

= cos2 θ − sin2 θ (15.4.6)
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where B = ±1, P (B = 1|A = 1) = cos2 θ, and P (B = −1|A = 1) = sin2 θ.
If P1 finds that A = −1, by similar arguments, the expectation value of B or 〈B〉A=−1 =

sin2 θ − cos2 θ, or similar to before,

〈B〉A=−1 =
∑
B

P (B|A = −1)B

= P (B = 1|A = −1)− P (B = −1|A = −1)

= sin2 θ − cos2 θ (15.4.7)

where P (B = 1|A = −1) = sin2 θ, and P (B = −1|A = −1) = cos2 θ. Then using Bayes’
theorem, it can be shown that

〈AB〉 =
∑
A,B

P (A,B)AB =
∑
A,B

P (B|A)P (A)AB =
∑
A

(∑
B

P (B|A)B

)
AP (A)

=P (A = 1)
∑
B

P (B|A = 1)B − P (A = −1)
∑
B

P (B|A = −1)B

=P (A = 1)〈B〉A=1 − P (A = −1)〈B〉A=−1 (15.4.8)

where (15.4.6) and (15.4.7) have been used in the above to evaluate to

E(a,b) = 〈A(a)B(b)〉 = [P (A = 1) + P (A = −1)]
(
cos2 θ − sin2 θ

)
= cos2 θ − sin2 θ = cos(2θ) (15.4.9)

since P (A = 1) + P (A = −1) = 1. Notice that the above reduces to the special cases of: (i)
when the polarizers P1 and P2 are aligned, namely when θ = 0◦, as in (15.4.2), and (ii) when
the polarizers are perpendicular to each other, with θ = 90◦, as in (15.4.3).

15.4.2 Prediction by Hidden Variable Theory

In the hidden variable theory derivation, a particle is assumed to be already in a polarization
state even before a measurement. A and B are random, but they are predetermined by a
hidden random variable λ. We let

A(a, λ) = ±1 (15.4.10)

B(b, λ) = ±1 (15.4.11)

Here, A and B hence flip-flop between ±1 entirely due to randomness of the variable λ. This
theory predicts the randomness of quantum mechanics experiments nicely. The expectation
value of AB then is

E(a,b) = 〈AB〉 =

∫
ρ(λ)A(a, λ)B(b, λ)dλ (15.4.12)
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where ρ(λ) is the probability distribution of the random variable λ. The above is a very
general representation of the hidden variable theory where we have not explicitly stated the
functions ρ(λ), A(a, λ) nor B(b, λ).

If a = b, then

A(a, λ) = B(a, λ) (15.4.13)

and the above becomes

E(a,a) =

∫
ρ(λ)A2(a, λ)dλ =

∫
ρ(λ)dλ = 1 (15.4.14)

Same as we would have found in (15.4.2).
If a⊥b, then

A(a, λ) = −B(b, λ) (15.4.15)

and (15.4.12) becomes

E(a,b) = −
∫
ρ(λ)A2(a, λ)dλ = −

∫
ρ(λ)dλ = −1 (15.4.16)

as would have been found in (15.4.3). Hence, hidden variable theory is in good agreement
with quantum mechanics interpretation of (15.4.2) and (15.4.3).

So far, everything is fine and dainty until when a and b do not belong to any of the above
category, but in general are inclined with respect to each other. If a 6= b in general, then the
hidden variable generates random A and B in such a manner that

|E(a,b)| ≤ 1 (15.4.17)

The above is less than one because now a and b are not exactly correlated or anti-correlated.
This is quite different from why (15.4.9) is less than one when θ 6= 0. As we shall see, this
gives rise to quite a different nature for E(a,b) for hidden variable theory.

To this end, we can show that

E(a,b)− E(a, c) =

∫
[A(a, λ)B(b, λ)−A(a, λ)B(c, λ)]ρ(λ)dλ (15.4.18)

Since A(a, λ)B(a, λ), B(a, λ) can be removed from the above and it can be rewritten as

E(a,b)− E(a, c) =

∫
[A(a, λ)A(b, λ)−A(a, λ)A(c, λ)]ρ(λ)dλ

=

∫
A(a, λ)A(b, λ)[1−A(b, λ)A(c, λ)]ρ(λ)dλ (15.4.19)

A factor A2(b, λ) = 1 has been added to the above so that it can be factorized. Also, it can
be seen that

−1 ≥ A(b, λ)A(c, λ) ≤ 1⇒ 1−A(b, λ)A(c, λ) ≥ 0 (15.4.20)
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|E(a,b)− E(a, c)| ≤
∫
|A(a, λ)B(c, λ)| [1−A(b, λ)A(c, λ)] ρ(λ)dλ

=

∫
[1−A(b, λ)A(c, λ)] ρ(λ)dλ (15.4.21)

where |A(a, λ)B(c, λ)| = 1 has been used. The above implies that

|E(a,b)− E(a, c)| ≤ 1− E(b, c) (15.4.22)

which is the Bell’s inequality. A more elaborate CHSH inequality is derived in the Appendix.
It can be easily shown that it cannot be satisfied by quantum mechanics that predicts (15.4.9).

Figure 15.3: The case for a, b, and c where the quantum mechanics prediction violates the
Bell’s inequality.

Say if we pick a, b, and c as shown in the Figure 15.3, then according to quantum mechanics
or (15.4.9),

E(a,b) = cos(90◦) = 0 (15.4.23)

E(a, c) = cos(45◦) =
1√
2

(15.4.24)

E(b, c) = cos(45◦) =
1√
2

(15.4.25)

Then in (15.4.22), we have ∣∣∣∣0− 1√
2

∣∣∣∣ = 0.707 6≤ 1− 1√
2

= 0.293 (15.4.26)

In experimental tests of Bell’s theorem, quantum mechanics triumphs over hidden variable
theory so far.¶ Hence, the spookiness of ghost-angel states will prevail in quantum mechanics.

¶In 1982, Alain Aspect (1947-) performed an experiment to confirm this.
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15.5 Quantum Cryptography

Quantum cryptography can be used for secure quantum communication. It is secure because
a quantum state cannot be replicated without disturbing the quantum state. Hence, whoever
wants to replicate a quantum state to steal the data will be easily detected. The property of
non-replication follows from the no-cloning theorem.

15.5.1 A Simple Quantum Encryption Algorithm

Let us assume that Alice and Bob communicate by the use of simple photon polarizers. When
Alice sends out a |V 〉 state photon, it represents a “1” and similarly, an |H〉 state photon
represents a “0”. If Bob receives with a similarly aligned polarizer, he receives the information
correctly. (We call this the VH mode.) If Alice aligns her polarizer at 45◦ and Bob follows
suit, he continues to receive the information correctly. In this case, the +45◦ state represents
a “1” and −45◦ represents a “0”. A plausible experimental set up is indicated in Figure 15.1.

Figure 15.1: Polarization of the incident photon can be detected with a polarizing beam
splitter (PBS) and single photon detectors (from Quantum Optics, M. Fox).

However, if Alice is in the VH mode and aligns her polarizer vertically, meaning that Alice
will send out a |V 〉 state photon to represent a “1”, and Bob is in the 45◦ mode, and aligns
his polarizer at +45◦, the bit information received by him is correct only 50% of the time.
This is because a |V 〉 photon

|V 〉 =
1√
2

(|+45〉 − |−45〉) (15.5.1)

which can be written as a quantum linear superposition of two quantum states in the |+ 45〉
and | − 45〉 states. Similarly, if Alice transmit an |H〉 state photon to represent a “0”,

|H〉 =
1√
2

(|+45〉+ |−45〉) (15.5.2)

Bob receives the bit of information correctly only 50% of the time.
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Figure 15.2: Communication between Alice and Bob using single-photon source and simplified
polarizer measurement schemes (from DAB Miller).

Similarly, if Alice is in the 45◦ mode, and transmits with her polarizer aligned in the
±45◦ angle, and Bob receives with polarizers in the VH mode with H and V polarization,
he receives the polarization of |H〉 and |V 〉 with equal likelihood (50% chance) regardless of
what polarization Alice sends. This is because the |+45〉 state and |−45〉 state are expressible
as a linear superposition of the |H〉 and |V 〉 states.

|+45〉 =
1√
2

(|H〉+ |V 〉) (15.5.3)

|−45〉 =
1√
2

(|H〉 − |V 〉) (15.5.4)

By the tenet of quantum measurement, these states are measured with equal likelihood of
being |H〉 or |V 〉.
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Now if Alice decides to use her polarizer randomly, and Bob receives with the polarizer
randomly so that they are equally likely to use VH mode or 45◦ mode. The probability that
their polarizers are aligned is correctly 50%. During this time, they communicate with no
error. The other 50% time, when their polarizers are misaligned, they communicate with 50%
error. Hence, 25% of the data are wrong.

After a preliminary quantum communication, Alice and Bob can communicate the infor-
mation about the alignments of their polarizers, say, by a phone call. Bob will then retain
only the data when their polarizers are correctly aligned and discard the rest. For the pre-
liminary communication, they can compare their data over the aligned case, and there should
be error free in principle.

If an eavesdropper, Eve, attempts to steal the information, she does so by using a polarizer
to intercept the photon. If Eve knows that Alice is using the VH mode, Eve aligns her polarizer
in the VH mode. After Eve has received the data, she can retransmit the data to Bob, thus
stealing the data. However, if the polarization used by Alice is random, Eve’s polarizer is
not aligned with Alice’s half the time. Eve would have corrupted her data making the wrong
transmission 50% of the time. This would increase the error in transmission of the data from
Alice to Bob making it wrong 25% of the time. If Alice and Bob communicate by a phone
call to check the security of their data transmission and found that it is wrong approximately
25% of the time, they would have suspected an eavesdropper.

Notice that Eve has to collapse the state of the photon sent out by Alice into one of the
two states of Eve’s polarizer before she can duplicate the photon and send it to Bob. Because
of the no-cloning theorem to be discussed next, Eve cannot duplicate the state of the photon
that Alice has sent without measuring it.

In a secure communication system, Alice and Bob do not send the real message in pre-
liminary testing of the security of time channel. Alice will first send Bob the secret key and
test if the channel is secure. If it is a secure channel, then she would send the rest of the
information. The above is known as the BB84 protocol, attributed to Bennett and Brassard’s
work in 1984.

Also, notice that the above secure communication system does not work in a classical
optical communication channel where a bunch of photons is sent. If a bunch of photon is sent
by Alice to denote a V or an H polarization to send “1” and “0”, when Eve eavesdrops with
her misaligned polarizer by 45◦, she would have noticed that equal number of photons are
emerging from her two orthogonal polarizations. By checking the phase of the two streams
of photons, she can easily duplicate a classical photon bunch and send it to Bob, meanwhile
stealing the data off the communication channel. Hence, the security of the quantum com-
munication channel comes from the interpretation of quantum mechanics: a particle is in the
linear superposition of quantum states before the measurement. A measurement collapses
the quantum state into one of the states “discovered” by the measurement.

The above discussion of a secure channel is based on ideal single-photon sources. In prac-
tice, non-ideality will give rise to communication errors. Quantum error correction schemes
have been devised to minimize the errors in a quantum communication channel.
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15.5.2 No-cloning Theorem

First we assume that a quantum operator can be designed such that it can clone a quantum
state without measuring it. But such a capability will violate the principle of linear superpo-
sition, as we shall show. Therefore, such an operator cannot be designed. This is a proof by
contradiction.

A quantum system is described by a quantum state that evolves from an initial state to
a final state following the laws of quantum mechanics. An example of such an evolutionary
operator is

T̂ = e−i
Ĥ
~ t (15.5.5)

The above quantum operator is a unitary operator as well as a linear operator. First, assume
that it has the capability of replicating a quantum state in system 2 to be identical to the
state in system 1 after acting on such a quantum system. It does so without altering the
quantum state of system 1, e.g., by a measurement. We denote this by

T̂ |Ψs〉2|Ψa〉1 = |Ψa〉2|Ψa〉1 (15.5.6)

By the same token, it should replicate

T̂ |Ψs〉2|Ψb〉1 = |Ψb〉2|Ψb〉1 (15.5.7)

Now if the state to be replicated is

|Ψc〉1 =
1√
2

[|Ψa〉1 + |Ψb〉1] (15.5.8)

Then

T̂ |Ψs〉2|Ψc〉1 =
1√
2

[
T̂ |Ψs〉2|Ψa〉1 + T̂ |Ψs〉2|Ψb〉1

]
=

1√
2

[|Ψa〉2|Ψa〉1 + |Ψb〉2|Ψb〉1] 6= |Ψc〉2|Ψc〉1 (15.5.9)

Clearly, the above violates the principle of linear superposition if the last equality is true.
Hence, such a cloning operator is impossible due to the violation of the principle of linear
superposition. The above proves the no-cloning theorem.

15.6 Quantum Computing

The distinguishing feature of quantum computing is quantum parallelism. Again, this follows
from the tenet of quantum measurement. A quantum state can be in a linear superposition of
many states before the measurement. After the measurement, the quantum state collapses to
one of the quantum states. The prowess of quantum computing, as mentioned before, comes
from the “ghost-angel” state of a quantum system.
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15.6.1 Quantum Bits (Qubits)

A quantum bit or a qubit is a bit in a quantum state that is in the linear superposition of
two eigen states representing the |0〉 bit and the |1〉 bit. Namely,

|ψ〉 = C0 |0〉+ C1 |1〉 (15.6.1)

where |C0|2 + |C1|2 = 1. The two states |0〉 and |1〉 can be the vertical and horizontal
polarization of a photon. Alternatively, it can be the up and down state of a spin, or any two
energy levels of a multi-level system.

The richness of quantum information is already manifested in this very simple example.
Unlike classical bits in classical computers, which can only have binary values, a qubit can
have multitudes of possible values depending on the values of C0 and C1. A two-level quantum
system, as has been shown in the spin case, can be represented by a Bloch sphere. Every
point on the Bloch sphere represents a possible quantum state due to the linear superposition
of two eigen states, depending on C0 and C1. Hence, there could be infinitely many states
that follow.

15.6.2 Quantum Gates

Analogous to classical logic gates, there are quantum gates that manipulate the |0〉 and |1〉
states of a qubit. A qubit as indicated by (15.6.1) can be represented by a column vector of
length two. For example, the qubit in (15.6.1) can be represented by [C0, C1]

t
, which is the

vector representation of the quantum state. A quantum gate transforms the quantum state
[C0, C1]

t
to another state [C ′0, C

′
1]
t
. Such a matrix[

C ′0
C ′1

]
=

[
M11 M12

M21 M22

] [
C0

C1

]
= M ·

[
C0

C1

]
(15.6.2)

has to be unitary. The matrix M can be regarded as the two-state representation of the
time-evolution operator described more abstractly by

M̂ = e−i
Ĥ
~ t (15.6.3)

In the above, the Hilbert space is replaced by that of a two-level system, so by subspace
projection, the operators become two-by-two matrix operators. Moreover, they are easily
proved to be unitary, a must for an operator constructed from the time-evolution operator.

Examples of quantum gates, expressed in their matrix representations, are

X =

[
0 1
1 0

]
(15.6.4)

Z =

[
1 0
0 −1

]
(15.6.5)

H =
1√
2

[
1 1
1 −1

]
(15.6.6)
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Figure 15.1: Some single qubit gates showing their input and output states.

X represents the NOT gate while Z represents one that flips the sign of |1〉 bit. H is called
the Hadamard gate that is almost like a “square root” gate. The above matrices can be easily
shown to be unitary.

When these quantum gates operate on the qubit denoted by (15.6.1), the results are as
follows:

|ψ〉 = C0|0〉+ C1|1〉 (15.6.7)

X̂|ψ〉 = C1|0〉+ C0|1〉 (15.6.8)

Ẑ|ψ〉 = C0|0〉 − C1|1〉 (15.6.9)

Ĥ|ψ〉 =
C0√

2
(|0〉+ |1〉) +

C1√
2

(|0〉 − |1〉) (15.6.10)

Moreover, one can show that

X̂2 = Ẑ2 = Ĥ2 = Î (15.6.11)

When expressed in terms of matrix algebra,

X

[
C0

C1

]
=

[
C1

C0

]
(15.6.12)

Z

[
C0

C1

]
=

[
C0

−C1

]
(15.6.13)

H

[
C0

C1

]
=

[
C0+C1√

2
C0−C1√

2

]
(15.6.14)

In addition to one qubit gate, there are also two qubit gates. In this case, there are two
input bits for these gates. They can be arranged as |0, 0〉, |0, 1〉, |1, 0〉, and |1, 1〉 as the four
input and output states. A very important one is the CNOT gate shown in Figure 15.2. The
upper line represents the first bit which is also the control bit, while the lower line represents
the second bit, whose output is the target bit. The ⊕ symbol represents addition modulus 2.



258 Quantum Mechanics Made Simple

Hence, its transformation matrix is given by

UCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =

[
I 0
0 Z

]
(15.6.15)

The above can also be implemented with a unitary transform.

Figure 15.2: A quantum circuit of a two-qubit gate representing the CNOT gate. It takes
two input streams, and has two output streams. The ⊕ symbol represents an exclusive or
operation, or addition modulus 2 (redrawn from Quantum Optics, M. Fox).

15.6.3 Quantum Computing Algorithms

As mentioned before, the most important aspect of quantum computing algorithm is quan-
tum parallelism. We will illustrate this with the simple Deutsch algorithm. This algorithm
assumes a two-qubit system, so that it has a two-qubit input and two-qubit output. It can
be implemented with the quantum circuit shown below:

Figure 15.3: The implementation of the Deutsch algorithm with quantum gates and circuits
(redrawn from Quantum Optics, M. Fox).

We start with a state representing the two qubits in the input as

|ψ0〉 = |0〉|1〉 = |0, 1〉 (15.6.16)
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At stage |ψ1〉, we have

|x〉 = Ĥ|q1〉 =
1√
2

(|0〉+ |1〉) (15.6.17)

|y〉 = Ĥ|q2〉 =
1√
2

(|0〉 − |1〉) (15.6.18)

Hence, the quantum state representing the two-qubit system at this stage is

|ψ1〉 = |x〉|y〉 =
1

2
(|0〉+ |1〉) (|0〉 − |1〉) =

1

2
(|0, 0〉 − |0, 1〉+ |1, 0〉 − |1, 1〉) (15.6.19)

The unitary operator ûf has no effect on the x qubit, but performs the operation y⊕ f(x) on
the y qubit. The function f(x) takes input x which is either 0 or 1. It produces an output
which is either constant or balanced, but the output is either 0 or 1.

Hence, according to the rules above, the quantum state |ψ2〉 of the two qubit system is

|ψ2〉 = |x〉|y ⊕ f(x)〉 (15.6.20)

Substituting the state |x〉 and |y〉 from (15.6.17) and (15.6.18) gives rise to

|ψ2〉 = |x〉|y ⊕ f(x)〉 =
1

2
(|0〉+ |1〉) (|0⊕ f(x)〉 − |1⊕ f(x)〉)

(15.6.21)

Multiplying out the above, with the rule that f(x) always takes its argument from the |x〉
bit, then

|ψ2〉 =
1

2
(|0, f(0)〉 − |0, 1⊕ f(0)〉+ |1, f(1)〉 − |1, 1⊕ f(1)〉) (15.6.22)

with the further rule that 0⊕ f(x) = f(x) has been used.
If f(x) is a constant function, then f(0) = f(1), and the above becomes

|ψ2〉const =
1

2
(|0, f(0)〉 − |0, 1⊕ f(0)〉+ |1, f(0)〉 − |1, 1⊕ f(0)〉)

=
1

2
(|0〉+ |1〉) (|f(0)〉 − |1⊕ f(0)〉) (15.6.23)

With the Hadamard operation on the upper qubit, we have

|ψ3〉const = |0〉 1√
2

(|f(0)〉 − |1⊕ f(0)〉) (15.6.24)

If for the balanced case, f(0) 6= f(1), hence f(1) = 1⊕ f(0). Then

|ψ2〉bal =
1

2
(|0, f(0)〉 − |0, 1⊕ f(0)〉+ |1, 1⊕ f(0)〉 − |1, f(0)〉)

=
1

2
(|0〉 − |1〉) (|f(0)〉 − |1⊕ f(0)〉) (15.6.25)
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After the H gate operation, we have

|ψ3〉bal = |1〉 1√
2

(|f(0)〉 − |1⊕ f(0)〉) (15.6.26)

The above shows the prowess of quantum parallelism with just one operation, one can de-
termine if a function f(x) is balanced or constant by observing the |q1〉 value of the output
qubits. A constant coin can represent a fake coin, while a balanced coin represents a real
coin. With one operation, one can determine if the coin is real or fake without having to
check both sides of the coin.

More sophisticated algorithms exploiting quantum parallelism, such as the Shor’s algo-
rithm and the Grover’s algorithm, have been devised. The Shor’s algorithm can perform a
Fourier transform in (logN)2 operations rather than the classical N logN operations. The
Grover’s algorithm can search a data base with N data in

√
N operations rather than the

classical N operations. Because of quantum parallelism, quantum computer can also perform
quantum simulation of quantum system which is not possible on classical computers.

15.7 Quantum Teleportation

Quantum teleportation is the idea of Alice being able to send a photon of unknown state to
Bob, without having to perform a measurement on this photon, nor disturb its state. We
denote the photon, called photon 1, in the unknown state by

|ψ〉1 = C0 |0〉1 + C1 |1〉1 (15.7.1)

In the beginning, this photon is only accessible to Alice. Alice, however, is accessible to
another photon, called photon 2, of an entangled Bell state. The other photon of the Bell
state, photon 3, is not accessible to Alice but is accessible to Bob.

We can define the state of the three photons by the direct product state

|Ψ〉123 =
1√
2

(C0 |0〉1 + C1 |1〉1) (|0〉2 |1〉3 − |1〉2 |0〉3) (15.7.2)

where the Bell state is assumed to be∣∣Ψ−〉
23

=
1√
2

(|0〉2 |1〉3 − |1〉2 |0〉3) (15.7.3)

Expanding (15.7.2) gives rise to

|Ψ〉123 =
1√
2

(C0 |0〉1 |0〉2 |1〉3 − C0 |0〉1 |1〉2 |0〉3

+C1 |1〉1 |0〉2 |1〉3 − C1 |1〉1 |1〉2 |0〉3) (15.7.4)

The four Bell states are complete and orthogonal, and the states of photon 1 and photon 2
can be expanded in the four Bell states; namely∣∣Φ+

〉
12

=
1√
2

(|0〉1 |0〉2 + |1〉1 |1〉2) (15.7.5)
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Figure 15.1: A teleportation experiment setup with photons. Alice makes measurement on
the two photons accessible to her using the Bell state measurement device, and communicate
the outcome to Bob via a classical channel. Bob then performs a unitary transformation on
his photon to obtain the input photon state. (From M. Fox, Quantum Optics.)

∣∣Φ−〉
12

=
1√
2

(|0〉1 |0〉2 − |1〉1 |1〉2) (15.7.6)

∣∣Ψ+
〉

12
=

1√
2

(|0〉1 |1〉2 + |1〉1 |0〉2) (15.7.7)

∣∣Ψ−〉
12

=
1√
2

(|0〉1 |1〉2 − |1〉1 |0〉2) (15.7.8)

Projecting (15.7.4) onto the four Bell states, and subsequently expanding (15.7.4) in terms
of them, we have

|Ψ〉123 =
1

2

[∣∣Φ+
〉

12
(C0 |1〉3 − C1 |0〉3)

+
∣∣Φ−〉

12
(C0 |1〉3 + C1 |0〉3)

+
∣∣Ψ+

〉
12

(−C0 |0〉3 + C1 |1〉3)

−
∣∣Ψ−〉

12
(C0 |0〉3 + C1 |1〉3)

]
(15.7.9)

In the above, the first two photons, photon 1 and photon 2, are grouped into different Bell
states. Moreover, the state of photon 3 resembles the state of the original photon 1. The
quantum system now is in a linear superposition of different Bell states.

The Bell state measurement device projects the first two photons onto a Bell state. The
Bell state measurement device collapses the quantum system into one of the four Bell states.
For example, when Alice finds that the first two photons are in the Bell state |Φ+〉12, then
the third photon must be in the state

|ψ〉3 = C0 |1〉3 − C1 |0〉3 (15.7.10)
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Bob can apply a unitary operator, similar to qubit gate operators described in the previous
section, to obtain the original state of photon 1.

The above does not violate the no-cloning theorem, because the original state of the
photon 1 is destroyed, and its semblance is reproduced in photon 3.

15.8 A Final Word on Quantum Parallelism

Quantum interpretation gives rise to the spookiness of quantum mechanics, in a way giving
it the capability that empowers ghosts and angels. Quantum parallelism is such an empower-
ment. It reminds me of a novel that I have read when I was young on the Monkey King. This
Monkey King is of Indian origin, but has permeated Chinese culture to take on a different
persona. He is known as Hanuman in India. According to the story in The Journey to the
West, this Monkey King had unusual capabilities. One of them was that he could pull a
strand of hair from his body, and with a puff of air, he could turn it into many duplicates of
himself. He could then fight his enemies from all angles and all sides. He thus made himself
invincible.

He was arrogant, mischievous, and wreaked havoc in the Heavenly Palace where the other
gods lived. Finally, he could only be tamed and subdued by Lord Buddha, summoning him
to accompany and protect the monk Xuan Zang in his treacherous journey to collect the
Buddhist Sutra from the West (in this case India).

Oh Lord, if we were to empower ourselves with the capabilities of ghosts and angels, who
is there to curb our power!

Appendix

A Derivation of the Clauser-Horne-Shimon-Holt Inequal-
ity

In addition to the Bell’s inequality, a more elaborate Clauser-Horne-Shimony-Holt (CHSH)
inequality can be derived. To this end, we can show that

E(a,b)− E(a,b′) =

∫
[A(a, λ)B(b, λ)−A(a, λ)B(b′, λ)]ρ(λ)dλ (A1)

The above can be rewritten as

E(a,b)− E(a,b′) =

∫
A(a, λ)B(b, λ)[1±A(a′, λ)B(b′, λ)]ρ(λ)dλ

−
∫
A(a, λ)B(b′, λ)[1±A(a′, λ)B(b, λ)]ρ(λ)dλ (A2)
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We have just added and subtracted identical terms in the above. After using the triangular
inequality

|E(a,b)− E(a,b′)| ≤
∫
|A(a, λ)B(b, λ)||1±A(a′, λ)B(b′, λ)|ρ(λ)dλ

+

∫
|A(a, λ)B(b′, λ)||1±A(a′, λ)B(b, λ)|ρ(λ)dλ (A3)

Using the fact that

|AB| = 1, 1±AB ≥ 0 (A4)

we have

|E(a,b)− E(a,b′)| ≤
∫

[1±A(a′, λ)B(b′, λ)]ρ(λ)dλ

+

∫
[1±A(a′, λ)B(b, λ)]ρ(λ)dλ (A5)

The above is the same as

|E(a,b)− E(a,b′)| ≤ 2± [E(a′,b′) + E(a′,b)] (A6)

It is of the form

|X| ≤ 2± Y (A7)

which implies that

|X| ± Y ≤ 2 (A8)

or

|X + Y | ≤ |X|+ |Y | ≤ 2 (A9)

Consequently, we have

|E(a,b)− E(a,b′) + E(a′,b′) + E(a′,b)| ≤ 2 (A10)

which is the Clauser-Horne-Shimony-Holt (CHSH) inequality. In (A6), if a′ = b′ = c, then
(A6) becomes

|E(a,b)− E(a, c)| ≤ 2± [E(c, c) + E(b, c)] (A11)

From (15.4.14), E(c, c) = 1. We pick the smaller of the right-hand side of (A11) and arrive
at

|E(a,b)− E(a, c)| ≤ 1− E(b, c) (A12)

The above is the previously derived Bell’s inequality.
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Figure 15.1: The Monkey King sending replicas of himself against his enemy, defeating ev-
eryone in his path.


